Who Controls the Internet? Analyzing Global Threats using Property Graph Traversals

Milivoj Simeonovski
CISPA, Saarland University
Saarland Informatics Campus
simeonovski@cs.uni-saarland.de

Giancarlo Pellegrino
CISPA, Saarland University
gpellegrino@cispa.saarland

Christian Rossow
CISPA, Saarland University
Saarland Informatics Campus
rossow@cispa.saarland

Michael Backes
CISPA, Saarland University & MPI-SWS
backes@cs.uni-saarland.de

ABSTRACT
The Internet is built on top of intertwined network services, e.g., email, DNS, and content distribution networks operated by private or governmental organizations. Recent events have shown that these organizations may, knowingly or unknowingly, be part of global-scale security incidents including state-sponsored mass surveillance programs and large-scale DDoS attacks. For example, in March 2015 the Great Cannon attack has shown that an Internet service provider can weaponize millions of Web browsers and turn them into DDoS bots by injecting malicious JavaScript code into transiting TCP connections.

While attack techniques and root cause vulnerabilities are routinely studied, we still lack models and algorithms to study the intricate dependencies between services and providers, reason on their abuse, and assess the attack impact. To close this gap, we present a technique that models services, providers, and dependencies as a property graph. Moreover, we present a taint-style propagation-based technique to query the model, and present an evaluation of our framework on the top 100k Alexa domains.

Keywords
Cyber-attacks; (DoS) denial of service attacks; property graph traversals

1. INTRODUCTION

About half of the world population is using the Internet every day to communicate with friends, read newspapers, and carry out financial transactions. These services rely on core operations such as IP routing, domain name resolution, and email transfers, which are carried out by organizations ranging from universities and governmental agencies to private-sector organizations. Such organizations thus have extensive power, which, if misused, can result in global-scale security violations. Service providers can perform various attacks such as advertising false BGP paths to sensitive targets through their network [3, 4] and injecting HTTP responses into TCP connections [17]. Even more severe security violations can be performed when providers cooperate. Recent events have shown that cooperation between providers and state authorities resulted in global-scale security incidents such as mass surveillance, e.g., the PRISM program [14], and distributed denial-of-service (DDoS) attacks, e.g., the Great Cannon attack [19, 16].

Service providers can also be victims of attacks. The Internet is often considered as a model of resilience due to its distributed and decentralized design. While this applies in cases of random node failures, it does not guarantee survivability of the network with targeted attacks [5, 26]. For example, attackers can focus their efforts against a few, carefully selected providers to disrupt network operations at large scale. These types of attacks have already been observed against root name servers, the servers at the top of the DNS hierarchy, so far they have had very limited impact. However, the skills and power of attackers are increasing, and the DNS infrastructure of Dyn.com, which serves popular websites, was struck by two DDoS attacks. While the volume of the attacks has not yet been disclosed, this attack caused outages in the name resolution of popular services such as Amazon, Netflix, Twitter, Reddit, and Spotify.

An increasing number of reports and studies are showing that a limited number of players have an important influence on the overall security of the Internet infrastructure. While we have a good understanding of attack techniques [16, 17], attackers [24], and victims [21], we have a rather limited capability to assess the impact of attacks against, or performed by, core service providers. In the past decades, the security of the Internet core infrastructures has been under continuous scrutiny. Many works focused on different facets, using analysis techniques such as topological analyses (e.g., [12, 13, 10]) and traditional threat analysis via attack enumeration (e.g., [6]). However, the contribution of these works is limited to a single core service, and, to date, the interdependencies between core services remain largely unexplored.
In this paper, we take a step forward and propose an investigation technique to assess global-scale threats. We present a model of the Internet infrastructures based on property graphs. Nodes of our model are servers, organizations, and autonomous systems, that are connected with edges to represent relationships. To mine data from our model, we present a combination of taint-style techniques and propagation rules, which is automatically translated in graph traversals. We assessed our approach on a model with 1.8 millions of nodes and 4.7 millions of relationships. Starting from the top 100K Alexa domains, we built our model using publicly available resources, e.g., RIPE Atlas, and by acquiring relationships via Web service crawling. Finally, we mined our model to assess the impact of attacks. We present six metrics to select attacker and victim candidates. Then, we measure the impact of three different attack scenarios, which are based on the Great Cannon attack, the PRISM program, and the DDoS against Dyn.com.

Our results show that already just a few players may have an extensive power: 14 countries and 14 autonomous systems can, directly or indirectly, affect the security of about 23% of websites. Our analysis show that the United States is the country with the largest fraction of power, i.e., 16% of websites, and that network operators, albeit of moderate size such as Google\(^1\), can match in terms of affected websites the aggregate result of large countries like Russia, Germany, Japan, and China. In addition, our results show that little has been learned from past attacks. For example, 70% of JavaScript (JS) inclusion is still done over unprotected connections, i.e., via HTTP URLs, which can be used to mount the Great Cannon attack. Finally, our results indicate that the DDoS attack against Dyn.com was the result of careful choice. Dyn’s A/Ses host authoritative name servers used directly and indirectly by 3% to 5% of the 100K Alexa domains.

This paper provides the following contribution:

- We present a first study on attacks based on dependencies between Internet core services;
- We present a framework to model and reason on global-scale threats;
- We present a taint-style technique based on propagation rules and property graphs to quantify the impact of security incidents;
- We assess our technique on 1.8M data items acquired from the top 100K Alexa domains.

2. BACKGROUND

Before presenting our framework, we describe relevant case studies and introduce our threat model.

2.1 Case Studies

Our study is motivated by three recent, large-scale and well-known security incidents.

The Great Cannon DDoS Attack—On March 16th, 2015, Greatfire.org, a non-profit organization monitoring Internet censorship in China, and GitHub, the hosting provider, were victim of a large DDoS attack, among the largest DDoS ever experienced by GitHub [19]. The attack was caused by malicious JavaScript code, which was injected into TCP connections crossing the Chinese network borders [16, 11]. The injected code turned Web browsers into an HTTP-based DDoS botnet by aggressively requesting resources from the targets [16, 11, 22].

The PRISM Program—On June 7th 2013, The Guardian documented PRISM, a National Security Agency surveillance program with direct access to Internet communications and stored information including emails, chats, and VoIP calls, from servers of popular tech companies such as Microsoft, Yahoo, Google, and Facebook [14]. While the direct involvement of popular tech providers is still unclear, in this paper, we make the assumption that establishing this type of collaboration is possible and can be voluntary, or coerced by authorities by means of law and court orders.

The DDoS Attack Against Dyn.com—On October 21st 2016, the DNS infrastructure of Dyn.com was struck with two DDoS attacks. According to Dyn.com,\(^2\) the attack caused increased DNS query latency and delayed zone propagation. As a result, Dyn.com customers, including Amazon, Netflix, Twitter, Reddit, and Spotify, experienced outages on the name resolution. At the time of writing, the details of the attacks are not published, however, the outage clearly affected hundreds of millions of Internet users, who could not access the online services of Netflix and Twitter.

2.2 Threat Model

From our three case studies, we derive the threat model for this paper. We focus on attacks that can target and involve a large number of individuals and organizations around the globe. We represent attacks as a set of three elements: an attacker, the attack goal, and the attack technique.

Attacker—Attackers can be a service provider, a group of providers, or a country. In case the attacker is the provider, we consider the attackers: domain name provider, email provider, network provider, content distribution network, and domain name owners.

Service cooperation can be achieved via collaboration between two or more attackers, or via a centralized coordinator, e.g., state-sponsored attacks. In both cases, we assume that colluding attackers have a shared, collective memory and information acquired by one attacker is available to other attacker.

Goal—The attack goal answers the question what attackers intend to achieve. From our case studies, we consider three goals: DDoS via distribution of malicious JavaScript, acquisition of emails, and DoS against service providers.

Technique—To achieve their goals, attackers can use different techniques. For example, law enforcement agencies may require access to user’s email boxes. Network providers may intercept TCP traffic traversing their own autonomous system (AS) to inject malicious JavaScript code. In this paper, we consider the following techniques: email sniffing, redirection via malicious domain resolution, in-path content injection, and hosting malicious content.

3. MODELING FRAMEWORK

We now present our modeling framework. We base our model on labeled property graphs. Labeled property graphs store information in nodes and edges in the form of key-value properties. We present property graphs in details in Section 3.1. We represent elements such as domain names,
IPs, organizations, and countries as nodes. Then, we use edges to represent relationships between nodes. For example, if a domain name resolves to an IP, then we add an edge between the two nodes. In a similar way, we represent relationships between IPs and countries in the sense that if an IP is located in a country, then we place an edge between the country and the IP. Finally, we use labels to specify the type of relationship.

We mine information from graphs using graph queries. Graph queries allow to visit graphs based on nodes, edges, and properties. In this paper, we used a technique based on taint-style propagation technique and propagation rules. Starting from an initial set of nodes, we propagate a taint value according to a list of rules. Propagation rules are presented in Section 3.2, and queries and their evaluation are presented in Section 3.3.

3.1 Property Graph

A labeled property graph \(G = (V, E, \lambda, \mu) \) is a directed multigraph where \(V \) is a set of nodes, \(E \subseteq (V \times V) \) is a set of edges, \(\lambda : V \cup E \to \Sigma \) is a function that labels nodes and edges with symbols of the alphabet \(\Sigma \), and \(\mu : (V \cup E) \times K \to S \) is a function that associates key-value properties, e.g., \((k, s)\) where \(k \in K \) is the key and \(s \in S \) is the string value, to nodes and edges.

Figure 1 shows an excerpt of a property graph. We use node labels to type model elements. For example, we use the label Domain for Internet domain names, e.g., google.com and Address for IP addresses, e.g., 172.217.18.14. We use node properties to store element data. For example, we use the key IP4 for nodes Address to store the dot-decimal notation for IPv4 addresses. Our model uses other types of nodes including Organization, Autonomous System (AS), and Country. The full list of node labels and properties is shown in Table 1.

When we can establish a relationship between elements, we place an edge, with the label specifying the type of relationship. Relationships can be established, for example, with DNS queries and publicly available databases such as RIPE Atlas. We present data acquisition in detail in Section 4. With reference to Figure 1, the domain name google.com resolves to 172.217.18.14 (DNS record type A), which is hosted in the AS number 15169 and geolocated in the United States. These three relationships are represented with edges labeled with A, ORIGIN_FROM, and LOC_IN respectively. Then, google.com has four authoritative DNS server one of which is ns1.google.com. The domain name google.com has also an email server aspmx.l.google.com whose IP4 is 66.102.1.27, also hosted in AS 15169. When we can also establish ownership of elements such as domain names, then we place edges between the Organization and the element. For example, in Figure 1 we have a node Google Inc., which is the organization that owns the domain google.com. We represent this relationship with an edge CTRL_BY. Finally, Figure 1 shows a relationship that exists between the domain theguardian.com and the email server aspmx.l.google.com. The complete list of edge types is shown in Table 1.

3.2 Taint-style Propagation and Rules

A central concept of our framework is a taint-style propagation and propagation rules. These elements are the building blocks to specify queries. The idea behind propagation rules is that each node of the graph may become compromised by an attacker. For example, if an attacker controls a host, then the Address node is considered compromised. As a consequence of this fact, Domain nodes that resolve to the compromised Address are compromised as well. The “propagation” of compromise between nodes follow specific rules that depend on the attack. Attacks may result in less severe consequences for node elements. Consider, for example, the Great Cannon attack. Web sites that included JS hosted in malicious networks can be considered compromised as well. However, in the specific case of the Great Cannon, the malicious JS code did not perform attacks against the originating server. Thus, in this case, no further entities are compromised.

Our framework supports an arbitrary granularity for compromise levels. In this paper, we use three levels with the following symbols: \(c \in \Sigma \) for (completely) compromised, \(pc \in \Sigma \) for partially compromised, and \(lc \in \Sigma \) for non-compromised. When a node \(n \) is compromised (i.e., \(c \)), we add the compromise level as a node property \(C \), e.g., \(\mu(n, C) = c \). The propagation is implemented via rules. Each rule is a pair of preconditions and postconditions. Preconditions are evaluated on the graph. If they hold, then postconditions will hold in the graph. This is achieved by modifying the graph such that postconditions will match. The general form of a rule is the following:

\[
\begin{align*}
\text{pre} & \quad (r) & \quad \text{post}
\end{align*}
\]

Where \(\text{pre} \) and \(\text{post} \) are two predicates for pre and post-condition, respectively.
With reference to the previous example, the propagation rule based on the \(A\) (name lookup) edge is the following:

\[
\mu(n, C) = c, e = (m, n) \in E, \lambda(e) = A \\
\mu(m, C) := c \\
(r_k)
\]

This rule can be read as follows: If node \(n\) is compromised, there is an edge \(e\) between \(m\) and \(n\), and the label of \(e\) is \(A\), then we mark \(m\) as compromised.

We use similar rules to Rule \(r_k\) for other type of relationships. For example, for MX edges we have the following rule:

\[
\mu(n, C) = c, e = (m, n) \in E, \lambda(e) = MX \\
\mu(m, C) := c \\
(r_M)
\]

Rules \(r_k\) and \(r_M\) can be applied in sequence. For example, let us assume that an address node \(n\) is compromised. Then, according to Rule \(r_k\), any domain \(m\) resolving to \(n\), i.e., \((m, n) \in E\), is also compromised. If \(m\) is a domain for mail exchange, according to Rule \(r_M\), any domain \(p\) using \(m\) as its mail exchange server, i.e., \((p, m) \in E\), is also compromised.

In general, starting from a compromised node and a set of rules, we can propagate values \(c\) to other nodes.

Propagation rules are also used to represent weaker forms of compromise. Consider the case in which \(m\) is a web server hosting shared JS libraries. If \(m\) is compromised, it can, for example, distribute malicious JS libraries, which can be included in third-party websites \(q\). As a result of this, users of \(q\) will execute the malicious code. However, this type of compromise may not entirely compromise the server of \(q\); instead it can be used to attack other servers or compromise a user session. We model these forms of compromise with the following rule:

\[
\mu(n, C) = c, e = (m, n) \in E, \lambda(e) = JS \\
\mu(m, C) := pc \\
(r_{JS})
\]

3.3 Query and Evaluation

We can now define more precisely a query to our model and its evaluation. A query \(Q = (I, R, \gamma)\) is composed of three elements: initial set of source nodes \(I\), a set of rules \(R = \{r_1, r_2, \cdots, r_n\}\), and result function \(\gamma\). The set \(I\) contains nodes in \(G\), i.e., \(I \subseteq N\). For example, if we want to evaluate an attack, source nodes are the initial nodes under control of the attacker and we mark them as compromised. Then, the set \(R\) is a set of rules, starting from source nodes, that propagate the tainted to other nodes. Finally, the result function \(\gamma\) is a generic function that given the graph \(G\) transformed by the propagation rules returns a data value.

The algorithm to evaluate a query \(Q\) is shown in Listing 1. The algorithm is divided into three parts. The first part from Line 3 to Line 7 initializes node labels of \(G\). Each node \(n\) in the initial set of compromised nodes \(I\) is marked accordingly, i.e., \(\mu(n, C) := c\). The remaining nodes are initialized with the symbol \(\perp\). The second part of the algorithm from Line 10 to Line 16 applies the propagation rules. We use an auxiliary queue \(Q\) where we keep the rules to apply. This part of the algorithm loops over the queue until it is empty. At each iteration, we retrieve a rule \(r\) from \(Q\), check whether the precondition holds, and apply the post conditions. The resulting graph is stored in \(G\). If the preconditions of \(r\) still hold also in the new graph, then we enqueue \(r\) in \(Q\). The loop terminates when \(Q\) is empty, i.e., all preconditions no longer hold. Finally, we apply the result function and return the result.

4. DATA SETS AND ACQUISITION

We instantiated our model on a data set of 1.8M nodes from which 350k are unique IP addresses, 1.1M are domain names and 12k are autonomous system. These nodes are connected with 4.7M relationships. Our acquisition starts from popular domains and it is expanded with server and network information. Finally, we add organizations and countries.

4.1 Initial Domain Names

We built our data set starting from domains that individuals and organizations may use for carrying out their daily activities. For this purpose, we used the top 100k Alexa domains, a data set of popular domain names maintained by Alexa.\(^3\) For each domain, we created a node \(Domain\). Our model contains additional domains that were implicitly acquired via Web crawling starting from the Alexa domains. To distinguish the origin of a domain name, we use a node property \(O\) that flags a node according to its origin.

4.2 Servers

Starting from the initial domain names, we resolve hosts that are responsible for core operations, i.e., web servers, authoritative name servers, email servers, content distribution servers, and routers. The collection of data is done via Domain Name System queries and a Web crawler.

Authoritative Name Servers—The DNS records of a domain name are maintained by the authoritative name servers. Each authoritative name server is responsible for a portion of the domain name space, the so-called DNS zone. DNS zone information is stored in the SOA record type. For each domain, we retrieve the SOA record, and add a node \(Zone\) connected with an edge \(ZONE\) to the domain. Then, we retrieve the fully-qualified domain name of authoritative name servers which are listed in the NS records. For each NS record, we add a node \(Domain\) connected with an edge.

\(^3\)http://www.alexa.com/
NS to the zone node of the domain. In addition, for each NS domain name, we resolve the IP addresses, and we add a node Address with the IP and an edge A from the domain to the IP.

Web Servers—Our initial data set is composed of domains of popular websites. By resolving the domain name, we obtain the IPs of the web server. For each of these IPs, we add a node Address in our model and place an edge A between the domain and the address. Domain names may also have aliases via the DNS CNAME record. In this case, we add the alias domain in the graph and link with a CNAME edge. Then, we further resolve the alias domain and add an Address node with an A edge.

Email Servers—Next, we identify email transfer agents. When email clients want to send an email to a recipient, they request the MX record of the domain name of the email address. The MX record can be a list of IP addresses and domains. For each IP, we add a node Address and connect it with an MX edge to the domain. For each domain, we add a node Domain in the graph and the MX edge. Then, we resolve the domain name into an IP address and add a node Address with an A edge to the MX domain.

Content Distribution Networks—More and more websites include JS libraries that are hosted on third-party servers. For example, websites can include JS code of advertisement network services to show advertisements to their users. Websites can also use JS frameworks to support website functionalities, e.g., user interface or communication with the server side. Among the popular frameworks we have, for example, jQuery and Angular.js.

Starting from a list of domain names, we identify these JS “include” relationships with a web crawler. We first visit the website and then retrieve all tags to external JS code. We also extract links to internal web pages, e.g., anchor tags, and repeat the analysis on the page of the new links. We repeat this operation for a depth of 2. For each of the retrieved JS URLs, we add an Address node if the host is an IP, and a Domain node if it is a domain name. For each edge, we store the URL scheme as property using the key S. For example, if the included JS is unprotected, i.e., HTTP, then $S = \text{HTTP}$.

4.3 Routing Information and Networks

We now add information about servers’ networks.

Autonomous Systems—An autonomous system is a collection of IP networks and routers which are under the control of a network operator. We retrieve the origin AS of an IP using the RIPEStat database service by RIPE NCC [2]. For each AS, we create an AS node and add an edge from the Address node to the AS node. We additionally retrieve the total number of prefixes announced by an AS and store this number as a node property.

4.4 Countries and Organizations

Finally, we include countries and organization information in the graph. Our goal is to establish a relationship between these entities and the servers of Section 4.2. There are three ways to establish that, i.e., at IP level, at AS level, and at domain level.

The first option is to link organizations and countries to individual IPs. This can be achieved via geolocation. Accordingly, we added geolocation data in our model using the MaxMind database [1]. While this can be achieved for countries, we are not aware of a database or an automated technique to associate a single IP to an organization controlling the server. Given the large number of IPs in our database, establishing this relationship manually is not a feasible task. The second option is to link entities to autonomous systems. This mapping is already available in RIPEStat and we include it in our model. The third is to link entities to domain names. The Domain WHOIS protocol can be used to query information about registered domain names including the domain registrant. Depending on the providing server, the structure and content of the provided information vary. WHOIS data is optimized for readability to humans [9] and thus does not have a consistent document format [15]. While a human can easily use WHOIS to retrieve data items for a single domain, it does not scale to a large volume of domain names. As an alternative source of data, we used the X.509 certificates used for HTTPS. X.509 certificates are primarily used to store servers’ public-key and the domain names on which the certificate is valid. Additionally, a X.509 certificate contains the organization name to which the certificate has been issued. We included this information in our database.

5. ENTITY IDENTIFICATION

Before assessing attacks, we use our model to select entities that can be either attack victims or the attackers. The selection criteria are based on metrics that reflect the popularity and the influence of entities. To this end, we defined six metrics divided into first- and second-order metrics. First-order metrics are basic metrics which rank entities according to the number of hosted servers. Second-order metrics combine basic metrics and measure the level of influence that an entity may have on third-party services. The most popular entities of our metrics are shown in Table 2.

5.1 First Order Metrics

We start with four first-order metrics, one for each server of our model, i.e., name servers, web servers, email servers, and JS hosting servers. We calculate these metrics using two sets of queries, one for ASes and the other for countries.

Metric #1 (Hosted Alexa Domains)—The first metric counts the number of Alexa domains hosted by an AS or a country. For an AS a, the first propagation rule is the following:

$$\mu(n, C) = c, c = (m, n) \in E, \lambda(e) = \text{ORIG_FROM}$$

followed by Rule r_λ. These two rules, starting from the source node a, propagate the taint value to all IP addresses and then to domain names. Domain names can originate from the Alexa database, or can be imported during the acquisition. To filter Alexa domains, we refine Rule r_λ by adding a check on the node property, i.e., $\mu(n, o) = \text{Alexa}$:

$$\mu(n, C) = c, c = (m, n) \in E, \lambda(e) = a, \mu(n, o) = \text{Alexa}$$

Finally, we define a function γ which returns the number of compromised domains.
For a country c, we use a similar query and a new rule that propagates the taint from c to all IPs and ASes located in c. The rule is the following:

$$
\mu(n, C) = c, e = (m, n) \in E, \lambda(e) = \text{LOC-IN} \\
\mu(m, C) := c
$$

Metric #2 (Hosted JS Libraries Providers) — The second metric calculates the number of JS hosting servers which are located in an AS or a country. The approach followed is similar to the one illustrated for Metric #1, however, we use a slightly modified version of Rule r_4:

$$
\Delta, e' = (m, n) \in E, \lambda(e') = \text{JS} \\
\mu(m, C) := c
$$

where Δ is the precondition of r_4. The new propositions $e' = (m, n) \in E$ and $\lambda(e') = \text{JS}$ describe the pattern that uniquely distinguishes JS hosting servers from other domains, e.g., a domain hosts a JS program if it has an incoming edge of type JS.

Metric #3 (Hosted Email Servers) — The third metric measures the number of email servers hosted by an attacker or victim. The query is similar to Metric #2 in which we modify Rule r_4 to consider domains with incoming edges of type MX.

Metric #4 (Hosted Name Servers) — The fourth metric measures the number of name servers hosted by an attacker or victim. Also, this rule is similar to the previous ones and Rule r_4 consider domains with incoming edges of type NS.

5.2 Second Order Metrics

Starting from the previous metrics, we build more sophisticated ones that quantify the influence of a provider or a country on third-party servers.

Metric #5 (Name Servers for JS Providers) — This metric measures the number of JS hosting servers whose authoritative name servers are hosted by a victim or attacker.

The rules used for an AS AS_i and the following one:

$$
\cdots, e = (m, n) \in E, \lambda(e) = \text{NS}, e' = (p, m) \in E, \lambda(e') = \text{JS} \\
\mu(m, C) := c
$$

where we used “\cdots” as a place holder for the taint precondition. This rule propagates the taint from an AS to its own IPs. An IP is counted if two conditions are met. First the IP n has an incoming edge NS from another node m, i.e., n is an authoritative server for m. Second, the node m has an incoming edge of type JS from a node p, i.e., m hosts a JS library for p. The query for the case of a country contains the Rule r_{10c} followed by r_{10a} and r_{8b}.

Metric #6 (Name Servers for Email Servers) — This metric measures the number of domain of email servers whose name server is hosted by a victim/attacker. The construction of the query is the same as for Metric #5. In the case of ASs, the rules used are r_{10a} and a modified version of r_{8b}.

6. ATTACK EVALUATION

We now evaluate the impact of attacks. We consider three attack scenarios, namely, distribution of JS malicious content (Section 6.1), email sniffing (Section 6.2), and DoS against core service providers (Section 6.3). We present results with two levels of granularity. First, we show the overall impact of attacks in terms of total number of affected...
fects Alexa domains. Second, for a selection of attacks, we present attack results on a per-victim base.

6.1 Distribution of JS Malicious Content

For this attack, we consider three techniques: hosting malicious JS content, injection of malicious JS on in-path TCP connections, and malicious name resolution redirection. We select attackers according to metrics #2 and #4 in Table 2. Then, for each technique and attacker, we measure attack results as the number of websites that, as a result of the attack, will distribute the malicious JS content to their users. Tables 3 (a) and 3(b) show the attack results when the attacker is an AS or a country, respectively.

Hosting Malicious JS Content—In this attack we assume that the attacker is either an AS or a country that colluded with web servers hosting JS code. For example, in the case of AS, we assume that the web servers hosted by the AS are cooperating with the origin AS. Possible attackers can be selected with Metric #2, which count the total number of domains hosting JS for each AS or country.

The attack results are shown in Table 3(a). The attack results show that countries can be very powerful attackers. For example, according to Metric #2, the United States hosts 47k JS hosting providers (see Table 2(a)) which could distribute malicious code to about 16% of the top 100k Alexa domains. However, ASes are also very powerful and affect a fraction of websites that is even larger than that of individual countries, and even groups of countries. For example, the AS of Google can affect about 9% of Alexa domains, the number of domains that can be affected by the Netherlands, Russia, Germany, Japan, China and Great Britain combined. Even more interestingly, the AS of Google reaches 9% of websites with only 762 servers compared to 3% of the 10k servers of Amazon.

This result highlights that the power of operators can be more precisely measured by taking into account to what extent other services depend on them. The AS of Google is not an isolated case. Other ASes can affect as many domains as a country. Examples of these ASes are CloudFlare, EdgeCast, Amazon-1 and Akamai. Each of them can distribute malicious code to more domains than the top six countries (excluding the United States).

Propagation rules—We created this table with the following rules. When the attacker is the AS, we use Rule rASG, rA, and rAS. If the attacker is a country, then we use the Rule rD, followed by the previous ones, i.e., rASG, rA, and rAS. The resulting graph is then processed by the γ function, which counts the number of tainted Alexa domains.

In-path Malicious JS Injection—Interestingly, a very large fraction, i.e., 82% of Table 3(a), of JS hosting service distribute JS libraries over unprotected connections, i.e., HTTP instead of HTTPS. Accordingly, these ASes and countries can intercept TCP connections from border gateways and inject malicious content similarly as performed for the Great Cannon attack. We may extend the measurement to protected resources, however, the attacker is required to control a valid certificate for the domain being hijacked. While this is a possible attack scenario, it requires additional effort that, considering the low number of protected resources, will produce a limited increase of the attack result. Table 3(a) shows the attack results on Alexa Web sites that include an unprotected JS program.

Among the 82% of JS inclusion over unprotected connections, 1,079 of them are crossing the Chinese network borders. However, China is not the country that can affect the largest fraction of websites. Other countries could perform better than China including the United States with 12,267 websites, the Netherlands with 2,639 websites, and Russia with 1,409 websites. An interesting aspect of our results is that this type of attack method does not perform any better than the hosting malicious content attack. In fact, injecting malicious JS code via web server collusion affects 17% fewer affected domains on average than hosting malicious content.

Similarly to the attack based on hosting malicious content, we observed that ASes can affect more domains than countries. For example, the AS of Google can affect as many domains as the Netherlands, Russia, and Germany together. However, also in this case, in-path malicious JS injection does not reach as many domains as the injection via server collusion. For example, an in-path code injection can cause Google to lose about 41% of total websites.

Now, we present a fine-grained analysis of this attack. We map the attack results to countries that would be affected if another country decides to perform this attack. An excerpt of these results are presented in Table 4(a). Attack results can be interpreted as a form of dependency among countries. Our results show two interesting facts. First, with different intensity, almost all the popular countries (except for six of them) can attack at least one domain of another country. Second, the dependency among countries is not symmetric. For example, consider the United States. According to all metrics, the United States is the most powerful attacker in our model. However, this influence is not symmetric, e.g., when compared to the Netherlands. While the United States can affect 283 Dutch domains, 967 US domains can be attacked by the Netherlands.

Propagation rules—The rules for this measurement are similar to those of the previous attack. However, we modified Rule rAS to limit the propagation to unprotected JS edges only:

\[\mu(n, c) = c, e = (m, n) \in E, \lambda(e) = \text{JS}, \mu(e, S) = \text{HTTP} \]

\[\mu(m, c) := pc \]

where \(S \) is the property key that stores the URL scheme of the include JS.

Malicious Name Resolution Redirection—Finally, malicious content can be distributed to Web browsers via malicious domain name resolution. In this attack, we assume that the authoritative name server of a domain hosting JS redirects users to a malicious server. The attack result is the number of websites that include a resource hosted on a server whose name server is colluded or compromised. This attack exploits three types of relationships of our model. The first relationship is between domains and the domains hosting JavaScript. The second relationship is the domain name resolution which maps, eventually, domain names to IPs. The third type of relationship is the domain name resolution process with an operator, e.g., country or network provider.

With this technique, countries do not gain considerably more power than the previous attacks. In most of the cases, all players can affect a slightly lower number of websites. Only two players stand out from the rest, i.e., the AS of
Propagation rules—We create this table with the following function that is defined by the first one is by acquiring them directly from the email server. The second one is by redirecting an email client toward a malicious email provider, and (d) malicious name resolution for email sniffing.

Malicious Name Resolution Redirection—Attackers that can perform this type of attack are selected using Metric #3, i.e., ASes or countries hosting email servers. This attack technique shows the predominance of the United States and Google in managing the email infrastructure of a large fraction of popular websites (See Table 3(c)). The United States alone can acquire emails of 25% of the most popular websites. Similarly, the AS of Google is hosting only 796 email servers which are used by 11% of the websites. The other players, such as Germany, have still relevant influence but up to 10 times less than the US or Google. Interestingly, most of the domains that can be affected by a country are hosted in the same country. For example 17K of the domains affected by the US are hosted in the US (See Table 4(b)).

Malicious Email Provider—Attackers that can perform this type of attack are selected using Metric #3, i.e., ASes or countries hosting email servers. This attack technique shows the predominance of the United States and Google in managing the email infrastructure of a large fraction of popular websites (See Table 3(c)). The United States alone can acquire emails of 25% of the most popular websites. Similarly, the AS of Google is hosting only 568 email servers which are used by 11% of the websites. The other players, such as Germany, have still relevant influence but up to 10 times less than the US or Google. Interestingly, most of the domains that can be affected by a country are hosted in the same country. For example 17K of the domains affected by the US are hosted in the US (See Table 4(b)).
malicious name servers potentially cannot redirect communication. The numbers provided in this scenario thus rather constitute upper bounds.

With this type of attack, we observe that Google loses most of its power. This can be explained by the fact that websites use Google email server via name servers which are not hosted by Google.

6.3 DoS against Core Service Provider

In this section, we consider the case in which a service provider is the victim of an attack. Here, we do not focus on the specific attack technique, but on the impact of making a provider unavailable. The metrics of Table 2 can be used to select a candidate. The queries used for the attack results can be reused for this type of assessment.

For example, let us consider the DoS attack that on the 21st of October 2016 was launched against Dyn.com. DynDNS is an autonomous system operated by Dyn.com. According to our model based on the top 100K Alexa domains, DynDNS does not host a relevant number of mail servers and JS hosting providers. However, it hosts 364 domain name servers. These name servers are authoritative for 3,570 domains hosting JS that provide JS to 5,559 top 100K Alexa domains (not shown in Table 3), of which 4,331 are unprotected JS inclusion. Furthermore, the name servers hosted by DynDNS are authoritative for 1,523 domains running mail servers which are used by 1,178 top Alexa domains. If the Dyn.com DNS infrastructure is attacked, then a fraction that ranges from 1 to 5% of the top 100K Alexa domains would be affected. The operation of these domains may be severely compromised, as JS used to deliver services via Web applications would no longer be available.

7. LIMITATIONS

We evaluate the impact of the attacks over static data acquired in a single time point, which can be seen a a snapshot of the current network status. Therefore the dependency graph is static. Also, we did not consider different network views (e.g., from different locations) and the data has been collected from a single vantage point located at Saarland University in Germany. This vantage point may have an influence especially for geographically distributed Content Delivery Networks (CDNs), in that our analyses are not hosted by Google.

8. RELATED WORK

The security of the Internet infrastructure has been under constant scrutiny of the research community. Countless works have been presented by using formal and empirical analyses. For example, Albert et al. [5] studied Internet robustness against random errors and targeted attacks. They show that the Internet provides high error tolerance, but it does not provide adequate robustness against attacks targeting hubs (i.e., nodes with higher connection degree). Following this seminal work, other works assessed other aspects of the problem such as hub selection (e.g., [26, 8]). Following this research line, our work takes an empirical approach to mine topology of the Internet infrastructures to study the impact of large-scale attacks.

The security of the Internet has been studied also empirically with measurements of BGP infrastructure [10]. JS inclusion [20], Web service networks [13], and HTTPS ecosystem [7]. Frey et al. [10] presented an analysis on the European BGP backbone using publicly available BGP data. Nikiforakis et al. [20] showed that the vast majority of websites rely on external JS libraries stored on poorly maintained web servers. Finally, Cangialosi et al. [7] studied dependences among providers based on shared X509 certificates, and its implications on the HTTPS ecosystem security. Our work presents a similar what-if analysis which complements these papers. However, while these works considered individual service in isolation, our work is more comprehensive, considering different services, intra-services relationships, and a framework to support analyses similar to the aforementioned works.

Finally, another line of works attempts to learn service dependencies via observations of network traffic (e.g., NS-DMiner [18] and Rippler [25]). While these tools can effectively learn dependencies, they require network traffic which is not available for the global analyses like the one presented by our paper and other works (e.g., [7]).

9. CONCLUSION

In this paper, we proposed an investigation techniques to assess global-scale threats. We presented a model of the Internet infrastructures based on property graphs. Moreover, to mine the data from the model, we presented a taint-style propagation technique for traversing the graph. We evaluated our framework, on a model built upon the top 100k Alexa domains by passively and actively collecting publicly available information. Using the presented metrics for selecting attacker and victim candidates, we assessed the impact of the attackers and identified the most influential Internet players. Finally, we showed how one country can influence another by using JS injection on in-path TCP connections and MX server collusion.

Acknowledgment

We thank the anonymous reviewers for their constructive comments. This work was supported by the German Federal Ministry of Education and Research (BMBF) through funding for the Center for IT-Security, Privacy and Accountability (CISPA) (FKZ: 16KIS0345, 16KIS0656) and the project BOB (FKZ: 13N13250).
References

