
Neural Network-based Question Answering over
Knowledge Graphs on Word and Character Level

Denis Lukovnikov
University of Bonn

lukovnik@cs.uni-bonn.de

Asja Fischer
University of Bonn

fischera@iai.uni-bonn.de
Jens Lehmann
University of Bonn

lehmann@uni-bonn.de

Sören Auer
University of Bonn

auer@cs.uni-bonn.de

ABSTRACT
Question Answering (QA) systems over Knowledge Graphs
(KG) automatically answer natural language questions us-
ing facts contained in a knowledge graph. Simple questions,
which can be answered by the extraction of a single fact,
constitute a large part of questions asked on the web but
still pose challenges to QA systems, especially when asked
against a large knowledge resource. Existing QA systems
usually rely on various components each specialised in solv-
ing different sub-tasks of the problem (such as segmenta-
tion, entity recognition, disambiguation, and relation clas-
sification etc.). In this work, we follow a quite different
approach: We train a neural network for answering simple
questions in an end-to-end manner, leaving all decisions to
the model. It learns to rank subject-predicate pairs to en-
able the retrieval of relevant facts given a question. The
network contains a nested word/character-level question en-
coder which allows to handle out-of-vocabulary and rare
word problems while still being able to exploit word-level
semantics. Our approach achieves results competitive with
state-of-the-art end-to-end approaches that rely on an at-
tention mechanism.

Keywords
Question Answering, Knowledge Graphs

1. INTRODUCTION
The ever increasing availability of data and information

requires significant advances in empowering users to mas-
ter this new wealth of information. In particular, knowl-
edge graphs (KG) comprising vast amounts of facts gain in-
creasing importance. Examples are open and crowd-sourced
knowledge graphs such as DBpedia [15]1 or WikiData2, but

1http://dbpedia.org
2https://www.wikidata.org

c©2017 International World Wide Web Conference Committee
(IW3C2), published under Creative Commons CC BY 4.0 License.
WWW 2017, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3038912.3052675

.

also proprietary enterprise knowledge graphs such as Google’s
Knowledge Graph (comprising more than 70 billion facts),
Microsoft Bing’s Satori Knowledge Base3 or Yandex’ Object
Answer4. Knowledge graphs are usually very large and not
easily accessible for users as they need to know a query lan-
guage as well as the the structure and relations in the knowl-
edge graph. Question Answering (QA) over KGs, which au-
tomatically translates natural language questions (or frag-
ments thereof) posed by humans into structured queries
(e.g. SPARQL) is an easy way for users to access the vast
and increasing amounts of information stored in such KGs.

Despite significant research efforts question answering is
still a challenge. Even in well-researched domains, such as
general domain factoid question answering in English, exist-
ing approaches struggle to match human level understanding
of questions. Languages other than English and more spe-
cialized domains, such as legal or biomedical data, present
additional challenges, making the task even more difficult.

Some of the challenges faced by QA systems are:

• Lexical gap – surface forms for relations expressed in a
question can be quite different from those used in the
KG,
• Ambiguity – the same word is used for different enti-

ties, such as president of a company or a country,
• Unknown knowledge boundaries – QA systems can of-

ten hardly decide whether a certain question is answer-
able at all give a certain knowledge base.

The traditional paradigm for QA approaches is (1) to con-
struct complex natural language processing (NLP) pipelines
(which can result in error propagation along the pipeline)
and (2) require manual adaption to new domains. AskNow [10],
for example, uses a pipeline comprising a POS tagger, template-
fitting, relation extraction, token merging and entity map-
ping. The Qanary methodology [5] follows an extreme real-
ization of this approach by enabling a fine-grained integra-
tion, cooperation and competition of pipeline components.

In this work, we follow a fundamentally different approach
that mitigates the main disadvantages of the pipeline method.
We develop an end-to-end neural network approach that
generates a solution in a single process and thus avoids (1)
complex NLP pipeline constructions, (2) error propagation,

3http://blogs.bing.com/search/2013/03/21/
understand-your-world-with-bing/
4https://yandex.ru/company/technologies/entity_
search

http://dbpedia.org
https://www.wikidata.org
http://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/
http://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/
https://yandex.ru/company/technologies/entity_search
https://yandex.ru/company/technologies/entity_search

and (3) can be retrained or reused for a different domain.
All decisions can be handled together in an integrated fash-
ion in order to leave the learning algorithm the freedom to
decide how to use the given information.

In this work, we restrict ourselves to simple questions,
which only require the retrieval of a single fact to be an-
swered. This is the setup of the SimpleQuestions task
recently presented by Bordes et al. [4]. The task of QA
over KG for simple questions (Simple QA) can be put more
formally as follows. Let G = {(si, pi, oi)} be a background
knowledge graph represented as a set of triples, where si
represents a subject entity, pi a predicate (also denoted as
relation), and oi an object entity. The task of Simple QA is
then: Given a natural language question represented as a se-
quence of words q = {w1, . . . , wT }, find a triple (ŝ, p̂, ô) ∈ G
such that ô is the intended answer for question q. This task
can be reformulated to finding the right subject ŝ and pred-
icate p̂ that question q refers to and which characterize the
set of triples in G that contain the answer to q.

For example, finding the answer to the question “What
cyclone affected Hainan?” requires finding the Freebase
entity m.0166br representing the Chinese province Hainan
and the relation fb:meteorology/affected_area/cyclone.
The entity representing Hainan has the label “Hainan” and
a notable type with label “Chinese province”.

We develop a holistic neural matching model that takes
basic textual information about entities and predicates and
uses some training and prediction enhancements to produce
results competitive to the state-of-the-art. Even though the
presented approach is restricted to simple questions, this
work can serve as a foundation for the future development
of more advanced neural QA approaches that can handle
more complex questions.

Compared to recent existing approaches [26, 12, 8], our
model is relatively simple in that it does not employ at-
tention mechanisms or separate segmentation models and
achieves state-of-the-art results when compared to end-to-
end models. A particular innovation of our approach in this
context is that we use both character- and word-level in-
formation from the question for both entity and predicate
prediction. Character-level modelling of questions (or en-
tity mentions) and entities has been shown advantageous
for this task because of its out-of-vocabulary (OOV) word
handling abilities [12, 26]. However, the downside of purely
character-level models is their inability to exploit word-level
semantics (as captured in word embeddings [17]), which are
useful for modelling questions, predicates and types. Our
model combines the OOV-related advantages of character-
level models and the rich semantics of word-level models. In
this respect, our work is close to that of Yin et al. [26], with
the difference that our approach employs a single question
representation network and is less specific for simple ques-
tions since it does not split the question into mention-pattern
pairs.

In summary, our main contributions are as follows:

• a simple and portable neural match-based model for
answering simple questions, that
(a) merges word- and character-level representations

of words modelling of the question to exploit the
advantages of both.

(b) learns to generate knowledge base-independent rep-
resentations of entities and relations that are built

∠

∠

EN
C
Q

EN
C
P

QUESTION

EN
C
E

ENTITY

PREDICATE

Figure 1: Visualization of the whole model. The
question is encoded using the ENCQ network, produc-
ing a question representation vector. Entity and
predicate representations are produced by ENCE resp.
ENCP. Question-entity and question-predicate pairs
are scored using a cosine similarity between their
representing vectors.

only from textual information associated with the
entities or relations.

• a custom negative sampling procedure.
• an extensive evaluation of our method and a detailed

root cause analysis for 250 questions.

The rest paper is structured as follows: We present our
approach in Section 2. We evaluate our implementation in
Section 3 and provide a detailed analysis and discussion in
Section 4. We survey related work in Section 5 and conclude
in Section 6 with an outlook on future work.

2. APPROACH
The problem of single relation question answering could

be divided into the following sub-tasks:

1. segmentation of q, i.e. finding the sub-sequences of
words Ms and Mp ⊂ {w1, . . . , wT }, which refer to
a subject and a predicate respectively,

2. mapping the chosen sub-sequences to an entity resp. a
relation in the graph, i.e. finding sg and pg to which the
sub-sequences Ms and Mp are referring to. Mapping
to entities is known as entity linking whereas mapping
to relations is referred to relation prediction.

Instead of explicitly finding solutions for the different sub-
tasks separately, our approach considers them together with-
out explicitly looking for a solution to either and instead
directly generates a solution for the full problem. We do
not employ any explicit relation lexicons (e.g. DBpedia
Lemon [24]) or other external information (such as OpenIE
extractions), instead letting the network learn the lexicon
from examples.

Our approach relies on recurrent neural networks (RNN)
since we are dealing with sequential data. RNNs take into
account the order of words, which is important since the
order of words significantly contributes to the meaning of a
sentence or phrase.

The model is further elaborated in the next section (Sec-
tion 2.1), followed by a description of the prediction process
(Section 2.2) and the training process (Section 2.3).

2.1 Model description
From a broad perspective, our model (see Figure 1) is a

matching function: given a question q and sets of candi-
date subject entities and relations, Cs = {s1, . . . , sn} and
Cp = {p1, . . . , pm} respectively, it returns the subject and
predicate that matches the question best. To do so, it

xt

ht-1

U

WUrUz WrWz

ht

Figure 2: Gated Recurrent Unit (GRU)

(1) maps a question q to vector representation rq = (rsq , r
r
q)T ,

where rsq and rrq are subject and the relation sprecific
encodings of the question respectively,

(2) maps each candidate subject si ∈ Cs to a vector rep-
resentation rsi ,

(3) maps each candidate predicate pj ∈ Cp to a vector
representation rpj ,

(4) and computes scores Ss(q, si) and Sp(q, pj) for each
pair rsq , rsi , i = 1, . . . , n, and rpq , rpj , j = 1, . . . ,m.

Based on these scores the final prediction is (ŝ, p̂), with

ŝ = argmax
si∈Cs

Ss(q, si) , (1)

p̂ = argmax
pj∈Cp

Sp(q, pj) . (2)

Steps (1)-(3) heavily rely on RNNs with Gated Recurrent
Units (GRUs) [6], which therefore are described first. In
the subsequent subsections after that, the four parts of our
model are described in detail.

Preliminary: Gated Recurrent Unit
The RNNs which are part of our model use GRUs [6, 7]
for calculating the hidden states of the network which are
described in the following.

The current hidden state ht at time step t of the RNN
(which is also its output at time t) is computed by interpo-
lating between the state ht−1 at previous time step and the
candidate state ĥt

ht = (1− zt) · ht−1 + zt · ĥt . (3)

with zt the update vector and · the element-wise vector
product.

The update gate zt for the interpolation is computed using
the current input xt and the previous state ht−1

zt = σ(W zxt + Uzht−1) , (4)

where W z and Uz are parameter matrices to be learned
during training and σ is the sigmoid activation function
σ(x) = 1/(1 + e−x) applied element-wise to the vector en-
tries.

The current candidate state ĥt is computed based on the
current input xt and previous state ht−1

ĥt = tanh(Wxt + U(rt · ht−1)) , (5)

where W and U are parameter matrices, tanh is the hyper-
bolic tangent activation function and rt is the value of the
reset gate, computed as follows

rt = σ(W rxt + Urht−1) , (6)

ENCQ
“What”

“cyclone”

“affected”

“Hainan”

GRU

GRU

GRU

GRU

REPW

REPW

REPW

REPW

rq

Figure 3: Question encoding network ENCQ. Each
word is represented by a vector using REPW. The
sequence of word vectors is encoded using a GRU.

with parameter matrices W r and Ur. A schematic repre-
sentation of the GRU can be found in Figure 2.

The advantage of using gated units such as GRU or long
short-term memory (LSTM) [14] is their ability to process
longer sequences, which arises from their additive manipu-
lation of the state vector and explicit filtering using gates.
In the case of the GRU, the reset gate rt determines which
parts of the previous state ht−1 are “ignored” in the com-
putation of the candidate state and the update gate zt de-
termines how much of the previous state is “leaked” into the
current state ht. The update gate could decide to forget
the previous state altogether or to simply copy the previous
state and ignore the current input. Both gates are parame-
terized (and thus trainable) and their values depend on both
the input xt and the previous state.

2.1.1 Representing the question
The mapping of a question q = {w1, . . . , wT } to its subject

and predicate related vector representations rs
q and rr

q, re-
spectively, is done using a single-layered unidirectional GRU
based encoder network. We call this part of the model the
question encoder ENCQ

rq =

[
rs
q

rp
q

]
= ENCQ({w1, . . . , wT }) . (7)

The question encoder ENCQ first uses the word representation
function REPW(wt) to generate vector representations for all
words wt, t = 1, . . . , T (as described in the next paragraph),
which are subsequently fed to the RNN until all words have
been seen. Starting with the initial hidden state h0, the
GRU of the question encoder RNN iteratively updates its
hidden state ht after processing each word according to
Equations (3) to (6), where the word representation vector
REPW(wt) is fed as input to the GRU (i.e. xt = REPW(wt)).
The final hidden state hT (produced after processing the
last word represented by REPW(wT)) is returned by ENCQ as
the representation of question q.

The question encoder is visualized in Figure 3.

Word representation.
In the following we descibe how we generate the vector

representations of the words w1, . . . , wT . In order to exploit
both word- and character-level information of the question,

GRUEmb

Emb

Emb

Emb

Emb

Emb

GRU

GRU

GRU

GRU

GRU

ENCW

“hainan”

h

a

i

n

a

n

GloVe

wt
c

wt
e

Figure 4: Word representation network REPW with ex-
ample. The word is considered as a sequence of char-
acter and fed to ENCW, where each character is embed-
ded and the sequence of character vectors is encoded
using a GRU to produce a character-level encoding
of that word. This is concatenated to the word em-
bedding (we use GloVe) to produce the complete
word representation.

we use a“nested”word- and character-level aproach concate-
nating the pre-trained embedding of a word with an RNN-
based encoding on character level.

As word embeddings, we use GloVe [17] vectors provided
on the GloVe website5. Such pre-trained word embeddings
implicitly incorporate word semantics inferred from a large
text corpus based on the distributional semantics hypothe-
sis [20]. This hypothesis can be phrased as “words with sim-
ilar meanings occur in similar contexts”, which in our case
translates to similar vectors for words with similar meanings.

Using those pretrained word embeddings allows us to bet-
ter handle synonyms and find better matches between words
in the question and subject labels or predicate URI’s. In ad-
dition, during testing, it allows to handle words that have
not been seen during training.

The word embedding of wt resulting in the dwe -dimensional
vector representation we

t can be formally described as fol-
lows

we
t = W>

g vt , (8)

where W g ∈ R|Vg|×dwe is the provided pretrained word em-
bedding matrix for a vocabulary of size |Vg| (GloVe covers
400k words), and vt is the one-hot vector representation of
wt. Since the coverage of word embeddings is limited, many
words appearing in the questions (especially those that are
part of a reference to a particular subject entity, e.g. the
last name “golfis” in the question “what city was alex golfis
born in”) are not contained in the vocabulary of the pre-
trained embeddings. In such cases (20.8% and 14.5% of
unique words in the train resp. test questions), we set the
word embedding to the zero vector.

5http://nlp.stanford.edu/projects/glove/

The encoding of the word wt = {w1
t , . . . w

K
t } on character-

level is based on a RNN encoder:

wc
t = ENCW({w1

t , . . . w
K
t }) , (9)

Inside ENCW, the characters wk
t , k = 1, . . . ,K are first embed-

ded by

ckt = W>
c v

k
t , (10)

with character embedding matrix W c ∈ R|Vc|×dce (for |Vc|
characters) learned during training, and vk

t the one-hot vec-
tor representation of the character wk

t . Then we feed the se-
quence of character vectors {c1t , . . . , cKt } to a single-layered
unidirectional GRU network and take its final state as the
character-level word encoding wc.

The added character-level encoding provides information
necessary for matching question words with entity labels,
in addition to providing distinguishable representations for
OOV words. This approach is similar to the char2word
model proposed by Ling et al. [16] with the difference that
we use a unidirectional GRU network.

Finally, to get the vector representation of a word wt, the
word embedding we

t and character-level encoding wc
t are

concatenated:

REPW(wt) =

[
we

t

wc
t

]
. (11)

The whole word representation network is illustrated in Fig-
ure 4.

2.1.2 Representing the subject
We use both the entity label and the type label of the enti-

ties in the knowledge graph to build subject representations.
Entity labels are encoded on the level of characters because
of the high prevalence of OOV words and their importance
for entity labels. On the other hand, OOV words are rather
rare in type labels and thus type labels are encoded on word
level.

For Freebase entities, we extract entity labels using the
type.object.name properties of entities and type labels of
entities by first getting the common.topic.notable_types of
entities6 and then taking the type.object.name value of the
types.

The character-level entity label encoding sl and word-level
type label encoding st are concatenated to produce the sub-
ject representation vector

sl = ENCSL({c1s, c2s, . . . }) , (12a)

st = ENCST({w1
t , w

2
t , . . . }) , (12b)

rs =

[
sl

st

]
, (12c)

where ENCSL is the character-level encoder of the subject en-
tity label and ENCST is the word-level type label encoder.
The label characters and type label words, respectively, are
first embedded (following Equation 10 and Equation 8, re-
specrively) and the embedding vectors are fed to the respec-
tive encoding RNNs. Both ENCSL and ENCST correspond to
single-layer unidirectional GRU-based RNNs and take their
final hidden state as the entity label encoding sl and type

6The notable types property provide the single, most char-
acteristic type for that entity. However, using all types of the
entity (e.g. concatenating their labels) could be interesting
as well, which we leave for future work.

http://nlp.stanford.edu/projects/glove/

GloVe

GloVeGRUGRUEmb

Emb

Emb

Emb

Emb

Emb

GRU

GRU

GRU

GRU

GRU

ENCSL
“hainan”

h

a

i

n

a

n

GRU

ENCST

“chinese”

“province”sl st

rs

Figure 5: Entity encoder with example. The entity
label is encoded on character level (ENCSL) and the
subject type label is encoded on word level (ENCST).
The two are concatenated to produce the subject
vector.

ENCR

/meteorology

/affected

_area

/cyclone

GRU

GRU

GRU

GRU

GloVe

GloVe

GloVe

GloVe

r
p

Figure 6: Predicate encoder network ENCR with ex-
ample. The predicate URI is split into words and
encoded on word level using GloVe embedding.

label encoding st, respectively. The subject representation
network is visualized in Figure 5.

This method of building subject representations is similar
to the method proposed by Sun et al. [21] who focus on entity
linking and CNNs for word-level entity name encoding (in-
stead of using RNNs for character level based encodings like
our model, which allows to handle OOV words) and word-
level entity type name encoding, followed by an additional
layer that merges the two (where we simply concatenate
both representations).

2.1.3 Representing the predicate
We use the predicate URI’s provided by the KG to build

latent vector representations of the predicates. The predi-
cate URI is first split into words w1

p, w
2
p, . . . , each word is

embedded (as described by Equation 8), and then the word
embeddings are fed into a single-layer word-level GRU-based
encoder ENCR that takes the final state of its RNN as the rep-
resentation of the predicate URI, that is

rp = ENCR({w1
p, w

2
p, . . . }) . (13)

The relation encoding network is visualized in Figure 6.

2.1.4 Matching scores
Given the question encoding vector rq = (rs

q, r
p
q), the

latent vector representation rp of the relation, and the la-
tent representation rs of the subject entity, we compute two
matching scores: one between the question and subject en-

tity and one between the question and predicate, as follows:

Ss(q, s) = cos(rs
q, rs) (14a)

Sp(q, p) = cos(rp
q , rp) , (14b)

where cos is the cosine similarity given by cos(a, b) =
(a · b)

|a||b| .

2.2 Prediction
With the model described in the previous section we are

now able to compute scores for question-subject and question-
predicate pairs (Equation (14)). Using these scoring func-
tions, we can solve the task of finding the right subject-
predicate pair (sg, pg) (i.e. , retrieving triples (sg, pg, oi) ∈ G
such that the set of objects in these triples constitutes the
answer to question q) by picking the best scoring subject en-
tity and predicate given a question according to Equations
(1) and (2), respectively. However, computing scores for all
entities and predicates in the KG would be very costly and
introduces a lot of noise. So we only consider small subsets
of entities and predicates which are most likely to be the
correct ones for a given question. We refer to this sets as
candidate subjects Cs and candidate predicates Cp, respec-
tively.

We explore two options for generating predictions. The
first proceeds in the following four steps:

1. generate subject candidates Cs (as described in Sec-
tion 2.2.1).

2. score each entity in Cs and take top-scored one as pre-
diction (Equations (1) and (14a))

3. generate predicate candidates Cp based on the top sub-
ject entity (see Section 2.2.2)

4. score each predicate in Cp and take top-scored one as
prediction (Equations (2) and (14b))

The second option allows to correct wrong subject predic-
tions by an added pruning step (which we refer to as subject
pruning in the following):

1. generate subject candidates Cs (see Section 2.2.1).
2. score each entity in Cs (Equation (14a))
3. generate predicate candidates Cp based on the top sub-

ject label (see Section 2.2.2)
4. score each predicate in Cp and take top-scored one

(Equations (2) and (14b))
5. prune Cs based on the predicted predicate as described

in Section 2.2.1 and take the top-scoring entity from
the filtered Cs as subject prediction

We now describe how the candidate subjects and candidate
predicates are constructed and pruned in detail.

2.2.1 Generation of candidate subjects
First, we collect the lowercased English entity labels from

the KG (for Freebase, we use the type.object.name prop-
erty). To generate the set of candidate subjects Cs, all word
n-grams of size 1 to L contained in question q are retrieved,
filtered and used for searching matching entities using the
collected labels according to the following rules:

• An entity whose label exactly matches a n-gram is
added to the set of candidates Cs.
• An n-gram that is fully contained inside a bigger n-

gram that matched at least one entity label is dis-
carded, unless the bigger n-gram starts with one of

the following words: “the”, “a”, “an”, “of ”, “on”, “at”,
“by” .
• In case an exact match is not found for an n-gram,

we search for entities whose label has an edit distance
with the n-gram of at most 1 and add them to Cs.
• If there are several entities matching a n-gram, the

entities are ranked by the number of triples in the KG
in which they play the role of the subject. Only the m
entities with highest rank are added to the candidate
set (in our experiments m ∈ {5, 10, 400}.)

Note, that the candidate generation can be efficiently imple-
mented using information retrieval libraries such as Apache
Lucene.

Pruning subjects based on predicted relation.
When generating the predicate candidates based on the

top subject label, we perform additional pruning of Cs: We
remove all entities that do not appear as subject in any of
the triples in G having the predicted relation as predicate.

2.2.2 Generation of candidate predicates
For generating the candidate set of predicates Cp we ex-

plore two approaches, which bose depend on Cs and the high-
est scored subject ŝ ∈ Cs

• Top subject entity based : only predicates occurring in
triples from G which have ŝ as subject are added to
Cp. This way of generating Cp is highly dependent
on subject prediction. If the wrong subject has been
chosen, it is highly probable the right predicate is not
in Cp.

• Top subject label based : all subject candidates from Cs
whose label is the same as that of the top-ranking can-
didate ŝ are considered and all predicates that occur
in triples having one of those entities as subject are
added to Cp.

2.3 Training
The model described above is trained with a ranking train-

ing approach, which drives the model to output a high score
for question-entity and question-predicate pairs contained in
the training set while producing a lower score for implausible
pairs. The loss function minimized during training is given
by

−
∑

(q,s+,p+)∈D

(
max

(
0, Ss(q, s−)− Ss(q, s+) + γ

)
+ max

(
0, Sp(q, p−)− Sp(q, p+) + γ

))
. (15a)

That is, both the pair of question and true subject (q, s+)
and the pair of question and true predicate (q, p+) are forced
to have a score of at least margin γ higher than the score
of corrupted pairs (q, s−) and (q, p−) consisting of the same
question sentence and a false subject or relation, respec-
tively. The false subjects s− and relations p− are randomly
sampled at each epoch as described in the next paragraph.
We also experimented with a binary softmax loss, which did
not result in improvements and was slightly slower during
training.

2.3.1 Negative sampling

At each iteration, a corrupted subject-predicate pair (s−, p−)
is generated based on the true subject-predicate pair (s+, p+)
from the training set.

In our experiments, we observed that the way we gen-
erate negative samples has a significant influence on the
results. We developed the following negative sample gen-
eration methodology, which tries to expose the model to
conditions close to those it will encounter during prediction.

Subject corruption.
To corrupt (s+, p+), a false subject s− can be sampled

from the space of all entities in the KG G. However, we
opt for a “close” corruption sampling scenario that forces
the model to learn to distinguish the correct entity from
more plausible wrong entities that are collected using the
same candidate generation procedure as the one used for
prediction.

In this “close” corruption scenario, the corrupted entity
s− for the correct entity s+ is sampled from the set X−

s+
,

which is constructed as

X−
s+

= Cis \ {s+} , (16)

where Ci
s is the subject candidate set for i-th question qi

in the training set. This way, s+ can be replaced by any
entity that is a subject candidate for the same question.

At each training epoch, we randomly sample from this set
X−

s+
of false close candidates unless its size is smaller than

5, in which case we sample randomly from the whole set of
entities in G.

Predicate corruption.
For predicate corruption, we first take the set X−

p+
of pred-

icates that occur in triples in G having s+ as subject. With
probability PX−

p+
with

PX = tanh(log(|X |+ 1)/3) , (17)

(which is higher as larger X is) we uniformly draw a random
sample from this set. Otherwise, we uniformly draw a ran-
dom sample from the set X̂−

p+
of predicates whose URI’s have

at least one word in common with the URI of the true predi-
cate p+ with probability PX̂−

p+
or sample uniformly from the

set of all predicates in G with probability 1 − PX̂−
p+

. This

way, preference is given to outgoing relations of the correct
subject but if the set is too small (which would result in the
same few predicates being used throughout the whole train-
ing process), we draw more samples from the set of similar
predicates or the set of all predicates in G.

2.3.2 Training settings
The loss is minimized using the AdaGrad optimizer [11]

with learning rate 0.1 in a mini-batch setting with batch
size 100. A margin of 0.5 gave the best results in our
experiments7. We train our model for 50 epochs8. We

7We also tried margins of 0.25 and 1.0 but did not observe
improvement.
8We observed that after about only 15 epochs our model al-
ready reaches decent performance on the validation set. Af-
terwards the accuracy continued to increase slowly, starting
to stagnate around 50 epochs. We did not observe overfit-
ting when training for at least 100 epochs.

use a 400-dimensional question encoding, 200-dimensional
entity and predicate representations and 100-dimensional
character-level word representations. (Training with a 600-
dimensional question encoding and 300-dimensional entity
and predicate representations did not increase performance.)
We use 100-dimensional GloVe word embeddings and 50-
dimensional character embeddings. A more thorough inves-
tigation of the hyperparameter space was not possible due
to the long training time and resource constraints.

2.3.3 Training data
We train on SimpleQuestions [4], a dataset consisting of

over 100.000 simple questions and the corresponding Free-
base triples providing the answer. We use training, vali-
dation, and test splits as provided in the dataset, contain-
ing 75.910, 10.845, and 21.687 questions, respectively. We
work against the FB2M subset of Freebase, as provided
with the SimpleQuestions data, which contains approxi-
mately 2 million entities and 6701 relations. The number
of questions referring to relations that have not been seen
during training is negligible (161 questions with 148 unique
relations). On the other hand, 78.5% of the 19406 distinct
subject entities in the test set are unseen during training.

2.4 Technical details
We implemented our approach9 using Theano10, Lasagne11,

and NLTK12. Training takes approximately two days on a
single Titan X GPU for 50 epochs with the reported hyper-
parameters.

3. EVALUATION
We evaluate our method on the provided test portion of

the SimpleQuestions dataset which contains N = 21.687
questions and the corresponding triples. For each ques-
tion we follow the procedure described in Section 2.2 to
find the best-scoring subject-predicate pairs, resulting in
(ŝi, p̂i), i = 1, . . . N . Comparing those to the right subject-
predicate pairs (si, pi), i = 1, . . . N provided by the testset
the accuracy is computed as∑N

i=1 1[(ŝi,p̂i)=(si,pi)]

N
, (18)

where 1[·] is the indicator function (that is, 1[a=b] = 0 if a 6=
b and 1[a=b] = 1 if a = b). In the following subsections, we
discuss our obtained results in different settings and compare
to existing approaches.

3.1 Influence of candidate generation
Table 1 shows the recall of the different candidate gener-

ation settings for subjects over the test set, where recall is
computed as the fraction of questions for which the set of
generated subject candidates includes the right subject en-
tity. The numbers indicate that including partial matches
(matches of n-grams with edit distance 1) results in a recall
increase of up to 2%.

Table 2 shows test accuracy for different candidate gen-
eration and pruning settings. Test accuracy in the FB2M
setting is reported for different numbers of subject entity

9http://github.com/WDAqua/teafacto
10http://deeplearning.net/software/theano/
11https://github.com/Lasagne/Lasagne
12http://www.nltk.org/

Candidates Partial matches Recall %

5 no 84.8
10 no 87.3
400 no 91.8
5 yes 85.4
10 yes 88.4
400 yes 93.7

Table 1: Candidate generation recall for subjects
over the test set. Recall is defined as the percentage
of test questions for which the expected entity is
retrieved during candidate generation.

Candidates Subject pruning Accuracy %

5 no 69.3
10 no 70.1
400 no 70.2
5 yes 70.0
10 yes 70.9
400 yes 71.2

Table 2: Test accuracy for different candidate gen-
eration settings.

candidates and with or without subject pruning after rela-
tion ranking. As can be seen in Table 2, pruning subjects
after relation prediction provides an improvement of at most
1% for our model by enforcing consistency with the set of
available triples. A larger number of candidates translates to
a higher accuracy due to higher candidate generation recall
(see Table 1).

To investigate how much the candidate generation con-
tributes to the results we computed the accuracy resulting
from randomly picking an entity from the list of subject can-
didate entities and subsequently randomly picking a relation
predicate from the list of outgoing relations of the chosen
subject entity. The results are shown in Table 3. The poor
performance verifies that the task of finding the right sub-
ject predicate pair can not be solved by n-gram based search
alone.

3.2 Comparison
We compare our results with the four recent state-of-

the-art works that developed QA models for the Simple-
Questions dataset. These works include the Memory Net-
work approach of Bordes et al. [4], the attentive CNN based
approach by Yin et al. [26], the character-level attention-
enhanced encoder-decoder approach by Golub and He [12],
and the word-level RNN-based approach by Dai et al. [8] (cf.
Section 5 for a more detailed discussion of these approaches).

We compare the results obtained by the state-of-the-art
models when evaluated in an end-to-end setting to the re-
sults we obtain with our model (presented in Table 4). The
second part of Table 4 shows the performance of two sys-

5 10 400
Accuracy (%) 5.23 4.72 4.03

Table 3: Test accuracy of random choice model, for
5, 10 resp. 400 subject entity candidates.

http://github.com/WDAqua/teafacto
http://deeplearning.net/software/theano/
https://github.com/Lasagne/Lasagne
http://www.nltk.org/

Approach Setting Test Accuracy %

Bordes et al. [4] end-to-end 62.7
Yin et al. [26] end-to-end 68.3
Dai et al. [8] end-to-end 62.6*
Golub and He [12] end-to-end 70.9
Our approach end-to-end 71.2

Dai et al. [8] active linking 75.7*
Yin et al. [26] focused pruning 76.4

Table 4: Comparison with state-of-the-art systems.
When marked with an asterisk (*), accuracy in the
FB5M test setting is given, otherwise FB2M test
setting results are shown.

tems that train and use a separate question segmentation
model that finds the entity mention, which improve their
results significantly. However, since the segmentation model
requires separate training with different data, we deem di-
rect comparison unfair.

As shown in Table 4, our approach achieves competitive
results in the end-to-end setting. Our approach beats the
baseline results of Bordes et al. [4] by a high margin, outper-
forms the CNN-based approach of Yin et al. [26] and man-
ages to match and surpass the attention-enhanced encoder-
decoder approach of Golub and He [12]. However, it is out-
matched by approaches that use a separately trained seg-
mentation model [26, 8]. Including a similar segmentation
model could improve our results as well by resolving the
segmentation errors (see next section) and reducing noise in
predicate relation patterns.

4. ERROR ANALYSIS
We perform error analysis on our single-layered unidirec-

tional question encoder model with 10 subject entity candi-
dates per n-gram to gain insight into the kind of errors our
approach produces.

We distinguish between the following types of errors:
• Missing candidates: The correct entity is missing in

the candidate set. For example, in the question “which
group recorded tokyo?”, “tokyo” has hundreds of possi-
ble candidates and by restricting the subject candidate
set to a small number (e.g. 10), there is a high chance
the right interpretation of “tokyo” is not among the
considered candidates.
• Indistinguishability: The predicted entity is indistin-

guishable from the correct entity (i.e., has the same
label and the same type). For example, the question
“what song was on the recording indiana?” expects
an entity with label “indiana” and type label “musi-
cal recording”. However, there exist multiple entities
in the KG conforming to these criteria and they all
receive the same score.
• Hard ambiguity: The top-scored entity has the same

label but different type from the lower-scored correct
entity and the question does not provide clear indica-
tions which entity is expected. For example, for the
question “where was eddie smith born?”, the two top-
ranked candidates are Eddie Smith, baseball player and
Eddie Smith, film actor.
• Soft ambiguity: The top-scored and correct entities

have the same label and different types, as with Hard

Cause of error Counts

Missing 26
Indistinguishability 9
Hard ambiguity 11
Soft ambiguity 1
Wrong subject mention 4

Wrong predicate 28

Total 69

Table 5: Counts of sources of errors that our model
makes on 250 test examples. The numbers have
been obtained after prediction with 10 candidates
per n-gram.

ambiguity, however, the question provides information
for correct disambiguation.
• Wrong subject mention: The label of the top-scored

entity is different from the label of the lower-scored
correct entity, indicating that the question encoder
made a mistake by (implicitly) taking the wrong sub-
ject mention span. For example, for the question “who
directed the show dancin’ homer?”, an entity with la-
bel “The Show” and type label “film” is the top-scored
entity, with a score slightly higher than the correct
subject entity with label “Dancin’ Homer” and type
label “tv episode”.
• Wrong predicate: The subject is predicted correctly,

but a wrong relation is chosen.
We manually inspect 250 questions from the test set and

present the findings in Table 5. Among errors resulting in
wrong subject prediction, missing candidates are the most
frequent category when only the top-10 candidates per n-
gram are used. This is due to the fact that in some cases,
there are many more than 10 suitable candidates for some n-
gram and the true subject entity was ranked lower than the
cutoff (10) during candidate generation (we rank by triple
count).

We believe the examples in error categories Indistinguisha-
bility and Hard ambiguity to be unresolvable with the infor-
mation currently used in our approach (entity labels and en-
tity type labels for matching and using provided knowledge
for subject pruning) since there isn’t enough information
even for humans to pick the right answer. When using larger
candidate sets (e.g. 400), we observed that many error cases
from the Missing candidates category migrated to the Hard
ambiguity or Indistinguishability categories . Other ambigu-
ity errors and segmentation errors, however, offer room for
the improvement of our approach.

We did not perform a thorough error analysis of rela-
tion prediction, but during inspection, we encountered cases
where picking the right relation is very challenging. One
such example is “who produced the film woodstock villa?”,
where our approach ranked /film/film/produced_by at the
top and /film/film/executive_produced_by, the correct
predicate, only second.

5. RELATED WORK
Our work most closely relates to recently proposed match-

based neural network approaches for Simple QA over KG.
The Memory Network based approach of Bordes et al. [4]

employs a bag-of-n-grams embedding approach. They also
investigate the use of additional data (i.e. WebQuestions and
ReVerb) for training.

Golub and He [12] propose a character-level approach based
on the attention-enhanced encoder-decoder architecture re-
cently developed for machine translation [1], where atten-
tion was introduced to better handle longer sequences. This
architecture was shown to be suitable for different tasks,
including for example constituency parsing [25] and seman-
tic parsing [9]. The model of Golub and He consists of a
character-level RNN-based question encoder and an attention-
enhanced RNN decoder coupled with two separate character-
level CNN-based entity label and predicate URI encoders.
Given that their model works purely on character-level, which
results in much longer input sequences, the influence of an
attention mechanism should be more pronounced than with
word-level models. From the output size perspective, it is
reasonable to assume that compared to machine translation
an attention mechanism is of lesser importance in Simple
QA where only two predictions need to be made per in-
put sequence. We developed a model without an attention
mechanism to reduce complexity and improve efficiency. In-
stead, we focused on better question representation, where
we operate on word level but also integrate character-level
information for each word. However, when extending our
model to more complex questions in future work, we believe
the addition of an attention mechanism could be advanta-
geous.

Yin et al. [26] employ CNNs and propose an attentive
pooling approach to improve the model. First, the ques-
tion is split into entity mention and relation pattern. Then,
the entity mention is encoded using a character-level CNN
and matched against a character-level encoded subject la-
bel; the relation pattern is encoded using a separate word-
level CNN with attentive max-pooling and matched against
a word-level encoded predicate URI. Instead of using an at-
tention mechanism to implicitly perform segmentation, in
this approach an attention mechanism is used to obtain bet-
ter matches for predicates. Our work is close to this ap-
proach in that it also encodes subject labels on character
level. However, our wokk is different in that we also add
type label information in order to improve subject disam-
biguation and employ a hierarchical word- and character-
level question encoder.

Dai et al [8] investigate a word-level RNN-based approach.
In contrast to our work, they encode the question on word-
level only and train/use Freebase-specific predicate and en-
tity representation (such as pretrained TransE embeddings
and type vectors). In contrast, our work (as well as that of
Golub and He [12] and Yin et al. [26]) fully relies on tex-
tual information provided by the KG about the entities and
predicates. Thus, the approach of Dai et al. is highly spe-
cific for Freebase and can less easily be transferred to other
KGs such as DBpedia Live for example.

Both Dai et al. [8] and Yin et al. [26] improved the per-
formance of their approaches using a BiLSTM-CRF tagging
model that is separately trained to label parts of the ques-
tion as entity mention or context (relation pattern).

A different line of research for QA over KG investigates se-
mantic parsing approaches to translate questions into formal
queries that can be executed against a knowledge base [2, 3,
18]. Most approaches evaluated on QALD assume a seman-
tic parsing approach that translates questions into SPARQL

queries [23, 22, 13, 10]. Our approach avoids a semantic
parsing approach requiring complex NLP pipelines, in par-
ticular mitigating the error propagation problem in those.

6. CONCLUSION
In this article, we presented an end-to-end, neural network

based approach for answering simple questions over large-
scale knowledge graphs, leveraging a hierarchical word- and
character-level question encoder. We also investigate the
use of type information for better subject disambiguation.
While keeping the model simple by refraining from using
attention mechanisms or separate segmentation models, the
proposed approach achieves competitive results when com-
pared to other end-to-end approaches. In comparison to
other character-level approaches for this task [12, 8], we ex-
plore hierarchical character-word level representation net-
works, which allows to exploit richer word-level semantics
as captured in pretrained word embeddings.

We found that the choice of negative samples has a big
impact on performance and experimented with a negative
sampling generation approach that exposes the model to
conditions equivalent to those under which it will be used
during prediction.

As our model does not learn KG-specific symbol represen-
tations, we believe it to be easily portable to other knowl-
edge graphs and suitable for KG’s that change over time
(such as DBpedia Live). However, we leave an evaluation of
its portability for future work.

In future work, the investigation of implicit [12] or ex-
plicit [26, 8] segmentation modelling should improve subject
prediction by better candidate pruning and reduce the noise
for better learning of predicate patterns. Exploitation of ex-
ternal lexical resources could also prove advantageous as it
should help to bridge the lexical gap.

Acknowledgments
This work is supported in part by the European Union un-
der the Horizon 2020 Framework Program for the project
WDAqua (GA 642795). We would like to thank Maria-
Esther Vidal and Joanna Lytra for their useful comments
and suggestions.

7. REFERENCES
[1] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine

translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473, 2014.

[2] J. Berant, A. Chou, R. Frostig, and P. Liang.
Semantic parsing on freebase from question-answer
pairs. In EMNLP, pages 1533–1544. ACL, 2013.

[3] J. Berant and P. Liang. Semantic parsing via
paraphrasing. In Proceedings of the 52nd Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages
1415–1425, Baltimore, Maryland, June 2014.
Association for Computational Linguistics.

[4] A. Bordes, N. Usunier, S. Chopra, and J. Weston.
Large-scale simple question answering with memory
networks. CoRR, abs/1506.02075, 2015.

[5] A. Both, D. Diefenbach, K. Singh, S. Shekarpour,
D. Cherix, and C. Lange. Qanary - a methodology for
vocabulary-driven open question answering systems.
In Sack et al. [19], pages 625–641.

[6] K. Cho, B. Van Merriënboer, D. Bahdanau, and
Y. Bengio. On the properties of neural machine
translation: Encoder-decoder approaches. arXiv
preprint arXiv:1409.1259, 2014.

[7] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio.
Empirical evaluation of gated recurrent neural
networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

[8] Z. Dai, L. Li, and W. Xu. Cfo: Conditional focused
neural question answering with large-scale knowledge
bases. arXiv preprint arXiv:1606.01994, 2016.

[9] L. Dong and M. Lapata. Language to logical form
with neural attention. In ACL (1). The Association
for Computer Linguistics, 2016.

[10] M. Dubey, S. Dasgupta, A. Sharma, K. Höffner, and
J. Lehmann. Asknow: A framework for natural
language query formalization in sparql. In Sack et al.
[19], pages 300–316.

[11] J. Duchi, E. Hazan, and Y. Singer. Adaptive
subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research,
12(Jul):2121–2159, 2011.

[12] D. Golub and X. He. Character-level question
answering with attention. EMNLP, 2016.

[13] S. He, Y. Zhang, K. Liu, and J. Zhao. Casia@ v2: A
mln-based question answering system over linked data.
In CLEF (Working Notes), pages 1249–1259, 2014.

[14] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[15] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch,
D. Kontokostas, P. N. Mendes, S. Hellmann,
M. Morsey, P. van Kleef, S. Auer, et al. Dbpedia–a
large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web, 6(2):167–195, 2015.

[16] W. Ling, T. Lúıs, L. Marujo, R. F. Astudillo, S. Amir,
C. Dyer, A. W. Black, and I. Trancoso. Finding
function in form: Compositional character models for
open vocabulary word representation. arXiv preprint
arXiv:1508.02096, 2015.

[17] J. Pennington, R. Socher, and C. D. Manning. Glove:
Global vectors for word representation. In EMNLP,
volume 14, pages 1532–1543, 2014.

[18] S. Reddy, M. Lapata, and M. Steedman. Large-scale
semantic parsing without question-answer pairs.
Transactions of the Association for Computational
Linguistics, 2:377–392, 2014.

[19] H. Sack, E. Blomqvist, M. d’Aquin, C. Ghidini, S. P.
Ponzetto, and C. Lange, editors. The Semantic Web.
Latest Advances and New Domains - 13th
International Conference, ESWC 2016, Heraklion,
Crete, Greece, May 29 - June 2, 2016, Proceedings,
volume 9678 of Lecture Notes in Computer Science.
Springer, 2016.

[20] M. Sahlgren. The distributional hypothesis. Italian
Journal of Linguistics, 20(1):33–54, 2008.

[21] Y. Sun, L. Lin, D. Tang, N. Yang, Z. Ji, and X. Wang.
Modeling mention, context and entity with neural
networks for entity disambiguation. In Proceedings of
the International Joint Conference on Artificial
Intelligence (IJCAI), pages 1333–1339, 2015.

[22] C. Unger, L. BÃijhmann, J. Lehmann, A.-C. N.
Ngomo, D. Gerber, and P. Cimiano. Template-based
question answering over rdf data. In A. Mille, F. L.
Gandon, J. Misselis, M. Rabinovich, and S. Staab,
editors, WWW, pages 639–648. ACM, 2012.

[23] C. Unger and P. Cimiano. Pythia: Compositional
meaning construction for ontology-based question
answering on the semantic web. In International
Conference on Application of Natural Language to
Information Systems, pages 153–160. Springer, 2011.

[24] C. Unger, J. P. McCrae, S. Walter, S. Winter, and
P. Cimiano. A lemon lexicon for dbpedia. In
S. Hellmann, A. Filipowska, C. BarriÃĺre, P. N.
Mendes, and D. Kontokostas, editors,
NLP-DBPEDIA@ISWC, volume 1064 of CEUR
Workshop Proceedings. CEUR-WS.org, 2013.

[25] O. Vinyals, L. Kaiser, T. Koo, S. Petrov, I. Sutskever,
and G. Hinton. Grammar as a foreign language. In
Advances in Neural Information Processing Systems,
pages 2773–2781, 2015.

[26] W. Yin, M. Yu, B. Xiang, B. Zhou, and H. Schütze.
Simple question answering by attentive convolutional
neural network. In COLING 2016, 26th International
Conference on Computational Linguistics, Proceedings
of the Conference: Technical Papers, 11-16 December
2016, Osaka, Japan, ACL 2016, 2016.

	Introduction
	Approach
	Model description
	Representing the question
	Representing the subject
	Representing the predicate
	Matching scores

	Prediction
	Generation of candidate subjects
	Generation of candidate predicates

	Training
	Negative sampling
	Training settings
	Training data

	Technical details

	Evaluation
	Influence of candidate generation
	Comparison

	Error analysis
	Related Work
	Conclusion
	References

