
Caching at the Web Scale

[Tutorial]

Victor Zakhary
University of California Santa

Barbara
Santa Barbara, 93106

California, USA
victorzakhary@cs.ucsb.edu

Divyakant Agrawal
University of California Santa

Barbara
Santa Barbara, 93106

California, USA
agrawal@cs.ucsb.edu

Amr El Abbadi
University of California Santa

Barbara
Santa Barbara, 93106

California, USA
amr@cs.ucsb.edu

ABSTRACT
Today’s web applications and social networks are serving
billions of users around the globe. These users generate bil-
lions of key lookups and millions of data object updates per
second. A single user’s social network page load requires
hundreds of key lookups. This scale creates many design
challenges for the underlying storage systems. First, these
systems have to serve user requests with low latency. Any
increase in the request latency leads to a decrease in user
interest. Second, storage systems have to be highly avail-
able. Failures should be handled seamlessly without affect-
ing user requests. Third, users consume an order of magni-
tude more data than they produce. Therefore, storage sys-
tems have to be optimized for read-intensive workloads. To
address these challenges, distributed in-memory caching ser-
vices have been widely deployed on top of persistent storage.
In this tutorial, we survey the recent developments in dis-
tributed caching services. We present the algorithmic and
architectural efforts behind these systems focusing on the
challenges in addition to open research questions.

Keywords
Distributed caching, Memcached, Replacement policy, Con-
tention

1. INTRODUCTION
During the past decade, social networks have attracted

hundreds of millions of users [4, 8]. These users share their
relationships, read news [15], and exchange images and videos
in a timely personalized experience [10]. To enable this real-
time personalized experience, the underlying storage sys-
tems have to provide efficient, scalable, highly available ac-
cess to big data. Social network users consume an order of
magnitude more data than they produce [9]. In addition,
a single page load requires hundreds of object lookups that
should be served in a fraction of a second [10]. Therefore,
traditional disk-based storage systems are not suitable to

c©2017 International World Wide Web Conference Committee (IW3C2),
published under Creative Commons CC BY 4.0 License.
WWW 2017, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3041021.3051098

.

handle requests at this scale due to the high access latency
of disks and I/O throughput bounds [22].

To overcome these limitations, distributed caching ser-
vices have been widely deployed on top of persistent storage
in order to efficiently serve user requests at scale. Akamai
and other CDNs use distributed caching to bring data closer
to the users and to reduce access latency. Memcached [5]
and Redis [7] are two distributed open source cache imple-
mentations that are widely adopted in the cloud and so-
cial networks. The default implementations of memcached
and Redis use the Least Recently Used (LRU) cache re-
placement policy. Although LRU is simple and easy to im-
plement, it might not achieve the highest cache hit rates
for some deployments. Increasing the hit rate by 1% can
save up to 35% of the average read latency [12]. There-
fore, much effort has focused on developing better caching
policies that achieve higher cache hit rates [20, 16, 13, 17].
Teams in Facebook [19, 10, 14] and Twitter [3] have fo-
cused on the architectural challenges of distributed caching
at datacenter scale. Sharding, replication, request batch-
ing, load balancing, hierarchical caching, data access skew-
ness, geo-replication, replica consistency, data updates, and
cache invalidation are examples of the architectural chal-
lenges for distributed caching and current implementations
address some of these challenges.

In Section 3.1, we present the data access model. Then, we
summarize the recent efforts on cache replacement policies
at a single server level in Section 3.2. Finally, we present
real deployed systems at a datacenter scale in Section 3.3.

2. TUTORIAL INFORMATION
This is a half day tutorial targeting researchers, design-

ers, and practitioners interested in systems and infrastruc-
ture research for big data management and processing. The
target audience with basic background about cache re-
placement policies, sharding, replication, and consistency
would benefit the most from this tutorial. For general au-
dience and newcomers, the tutorial introduces the design
challenges that arise when caching services are designed at
the web scale. For researchers, algorithmic and architec-
tural efforts in distributed caching are presented together
showing the spectrum of recent solutions side by side with
their unhandled challenges. Our goal is to enable researchers
to develop designs and algorithms that handle these chal-
lenges at scale. We prepared some supportive slides cov-
ering different design decisions and reasoning behind these

909



decisions. These slides are hosted under the url: http:

//cs.ucsb.edu/~victorzakhary/www17/supportive/

3. TUTORIAL OUTLINE

3.1 Data Access Model
We assume millions of end-users sending streams of page-

load and page-update requests to hundreds of stateless ap-
plication servers as shown in Figure 1a. Application servers
hide the storage details from the clients and reduce the num-
ber of connections handled by the storage system. Each
request is translated to hundreds of key lookups and up-
dates. As traditional disk-based systems cannot efficiently
handle user requests at scale, caching services have been
widely used to enhance the performance of web applications
by alleviating the number of requests sent to the persis-
tent storage. The ultimate objective of caching services is
to achieve a high hit-rate because the latency of a cache
miss is usually few orders of magnitude more than a cache
hit. Therefore, designing a caching service to serve a very
large key space using commodity machines introduces many
challenges. First, the key space is very large and serving
the whole key space using a single machine violates cache
locality and increases the miss-rate. To overcome this prob-
lem, designers shard the key space into multiple partitions
using either range or hash partitioning and use distributed
caching servers to serve different shards. Second, the key
space, even after sharding, is too large to fit in memory
of commodity servers. Therefore, a cache replacement pol-
icy has to be carefully designed to achieve high hit-rates
without adding a significant bookkeeping overhead. Also,
policies should avoid using shared datastructures between
threads to reduce contentions. Third, commodity machines
can fail and replication is needed to distribute the workload
and achieve high availability. Figure 1b shows an abstract
model for a distributed caching service where each caching
server is serving a specific shard and each shard is served by
multiple replicas.

3.2 Replacement policy-base solutions
Memcached[5] and Redis[7] are two widely adopted open

source implementations for distributed caching services. Mem-
cached provides a simple Set, Get, and Delete interface for
only string keys and values while Redis extends the interface
to handle other datatypes. Cloud providers have adopted
memcached and Redis and provide customized versions of
both as services for their clients [1, 6, 2]. Both memcached
and Redis use the LRU cache replacement policy which only
tracks the time of access of each key in the cache. Other
efforts enhance the performance by introducing more track-
ing per key access or by sharding the hash table and the
tracking datastructures to reduce the contention between
threads and avoid global synchronization. Adaptive Re-
placement Cache ARC[17] tracks the recency and the fre-
quency of access in addition to the recency of key eviction to
decide which key should be evicted next. To reduce thread
contention, memcached divides the memory into slabs for
different object sizes and each slab maintains its tracking
information independently. CPHASH[18] introduces a con-
current hash table for multi-core processors. Message pass-
ing is used to transfer lookups and inserts between slabs.
Request batching and locks avoidance allows CPHASH to
achieve 1.6x better throughput than a hash table with fine-

grained locks. Sharding the memory between slabs uni-
formly can lead to under utilization for some slabs and high
miss-rate for others. Therefore, Cliffhanger[12] dynamically
shards the memory between slabs to achieve the highest
overall hit rate. Dynacache[11] dynamically profiles the ap-
plications’ workload, shards the memory resources, and de-
cides the replacement policy that achieve the highest cache-
hit rate for the profiled workload. To avoid slab under-
utilization, other solutions suggest mapping keys to multiple
slabs. Cuckoo hashing[20] defines two hash functions that
map every key to two memory slabs. An insertion might
trigger a sequence of insertions or an eviction if the mem-
ory slabs of the inserted key are full. Lookups require to
check the key in its corresponding two buckets. To opti-
mize the lookup cost, MemC3[13] uses tags for fast lookups
optimizing cuckoo hashing for read-dominated workloads
and allows multi-reader single-writer concurrent accesses. Li
et al.[16] introduces fast concurrent cuckoo hashing to sup-
port high throughput multiple writers. Other solutions re-
duce the miss-rate by increasing the effective cache size.
zExpander[21] achieves this by representing data objects in
compact and compressed formats.

3.3 Real deployed systems
Facebook [19] and Twitter [3] have built their own dis-

tributed version of memcached. Facebook scaled memcached [19]
by partitioning the key space into different pools. Each pool
is served by multiple replicas to tolerate failures and dis-
tribute the lookup workload. Both Twitter and Facebook
implementations batch requests in a client proxy to reduce
the number of requests sent to the server. Invalidation mes-
sages are sent from the persistent storage to the cache replica
to invalidate the stale values. Facebook and Twitter use
memcached as a lookaside cache. However, memcached is
not optimized to capture a graph storage model. Therefore,
Facebook built Tao [10], a distributed caching service op-
timized for graph storage models. In Tao, nodes and their
associations are served from the same caching server. Tao
uses storage and caching geo-replication to overcome a data-
center scale outage. Updates go to the master storage replica
through a cache leader server which is responsible for all the
updates and the invalidation messages for all the data items
in its shard. In Tao, heavy hitters (hot data objects) are han-
dled by introducing hierarchical caching where heavy hitters
are cached in the upper hierarchy. Both Tao and memcached
at Facebook support eventual consistency between the repli-
cas.

The current systems have addressed many of the distributed
caching challenges. However, challenges like 1) data access
skewness, 2) dynamical changes in access pattern, 3) provid-
ing stronger guarantees of replica consistency, and 4) pro-
viding consistency between multiple data representations are
still open research questions that require innovative algorith-
mic and architectural solutions to provide these guarantees
at scale.

4. BIOGRAPHICAL SKETCHES
Victor Zakhary is a PhD student at the University of

California at Santa Barbara. His current research work is in
the areas of data placement for geo-replicated databases and
for distributed caching services to achieve low access latency
and dynamically handle data access skewness.

910



(a) System model without caching (b) System model with caching

Figure 1: System model

Divyakant Agrawal is a Professor of Computer Science
at the University of California at Santa Barbara. His current
interests are in the area of scalable data management and
data analysis in cloud computing environments, security and
privacy of data in the cloud, and scalable analytics over big
data. Prof. Agrawal is an ACM Distinguished Scientist
(2010), an ACM Fellow (2012), and an IEEE Fellow (2012).

Amr El Abbadi is a Professor of Computer Science at
the University of California, Santa Barbara. Prof. El Ab-
badi is an ACM Fellow, AAAS Fellow, and IEEE Fellow. He
was Chair of the Computer Science Department at UCSB
from 2007 to 2011. He has served as a journal editor for sev-
eral database journals and has been Program Chair for mul-
tiple database and distributed systems conferences. Most
recently Prof. El Abbadi was the co-recipient of the Test of
Time Award at EDBT/ICDT 2015. He has published over
300 articles in databases and distributed systems and has
supervised over 30 PhD students.

5. ACKNOWLEDGEMENTS
This research was supported by gifts from Oracle Research

and Huawei Research.

6. REFERENCES
[1] Amazon elasticache in-memory data store and cache.

https://aws.amazon.com/elasticache/.

[2] Azure redis cache. https:
//azure.microsoft.com/en-us/services/cache/.

[3] Caching with twemcache. https://blog.twitter.
com/2012/caching-with-twemcache/.

[4] Facebook company info.
http://newsroom.fb.com/company-info/.

[5] Memcached. a distributed memory object caching
system. https://memcached.org/.

[6] Memcachier. https://www.memcachier.com/.

[7] Redis. http://redis.io/.

[8] Twitter: number of active users 2010-2016.
https://www.statista.com/statistics/282087/

number-of-monthly-active-twitter-users/.

[9] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale

key-value store. In ACM SIGMETRICS Performance
Evaluation Review, volume 40, pages 53–64. ACM,
2012.

[10] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka,
P. Dimov, H. Ding, J. Ferris, A. Giardullo,
S. Kulkarni, H. Li, et al. Tao: FacebookâĂŹs
distributed data store for the social graph. In
Presented as part of the 2013 USENIX Annual
Technical Conference (USENIX ATC 13), pages
49–60, 2013.

[11] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti.
Dynacache: Dynamic cloud caching. In 7th USENIX
Workshop on Hot Topics in Cloud Computing
(HotCloud 15), 2015.

[12] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti.
Cliffhanger: Scaling performance cliffs in web memory
caches. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages
379–392, Santa Clara, CA, Mar. 2016. USENIX
Association.

[13] B. Fan, D. G. Andersen, and M. Kaminsky. Memc3:
Compact and concurrent memcache with dumber
caching and smarter hashing. In Presented as part of
the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 13), pages
371–384, 2013.

[14] Q. Huang, K. Birman, R. van Renesse, W. Lloyd,
S. Kumar, and H. C. Li. An analysis of facebook
photo caching. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles,
pages 167–181. ACM, 2013.

[15] H. Kwak, C. Lee, H. Park, and S. Moon. What is
twitter, a social network or a news media? In
Proceedings of the 19th international conference on
World wide web, pages 591–600. ACM, 2010.

[16] X. Li, D. G. Andersen, M. Kaminsky, and M. J.
Freedman. Algorithmic improvements for fast
concurrent cuckoo hashing. In Proceedings of the
Ninth European Conference on Computer Systems,
page 27. ACM, 2014.

911



[17] N. Megiddo and D. S. Modha. Arc: A self-tuning, low
overhead replacement cache. In FAST, volume 3,
pages 115–130, 2003.

[18] Z. Metreveli, N. Zeldovich, and M. F. Kaashoek.
Cphash: A cache-partitioned hash table. In ACM
SIGPLAN Notices, volume 47, pages 319–320. ACM,
2012.

[19] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, et al. Scaling memcache at facebook. In
Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
13), pages 385–398, 2013.

[20] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of
Algorithms, 51(2):122–144, 2004.

[21] X. Wu, L. Zhang, Y. Wang, Y. Ren, M. Hack, and
S. Jiang. zexpander: a key-value cache with both high
performance and fewer misses. In Proceedings of the
Eleventh European Conference on Computer Systems,
page 14. ACM, 2016.

[22] H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and
M. Zhang. In-memory big data management and
processing: A survey. IEEE Transactions on
Knowledge and Data Engineering, 27(7):1920–1948,
2015.

912




