Advertising Keyword Recommendation based on Supervised Link Prediction in Multi-Relational Network

Xiao Yang, Tao Deng, Zhi Guo, Zongyao Ding
Baidu, Inc.
Beijing, China
{yangxiao04, dengtao02, guozhi, dingzongyao}@baidu.com

ABSTRACT
In the sponsored search system, advertisers bid on keywords that are related to their products or services to participate in repeated auctions and display their ads on the search result pages. Since there is a huge inventory of possible terms, instructive keyword recommendation is an important component to help advertisers optimize their campaigns and improve ad monetization. In this paper, by constructing a heterogeneous network which contains four types of links between advertisers and keywords based on different data resources and mining complex representations of network structure and task-guided attributes of nodes, we propose an approach to keyword recommendation based on supervised link prediction in multi-relational network. This method can retrieve ample candidates and provide informative ranking scores for recommended list of keywords, experimental results with real sponsored search data validate the effectiveness of the proposed algorithm in producing valuable keywords for advertisers.

CCS CONCEPTS
• Information systems → World Wide Web → Online advertising. Sponsored search advertising

General Terms
Algorithms, Economics.

Keywords
Keyword recommendation, Sponsored search, Link prediction, Network mining.

1. INTRODUCTION
Sponsored search is an indispensable part of the business model in modern online advertising market. By determining the keyword searches that are most relevant to their business's offerings, advertisers create ads and bid on relevant keywords to place their ads in the search results. The display and position of the ads is determined by a real-time auction when users are searching for corresponding terms. As users can express their search intent in a variety of different queries, it is challenging for an advertiser to find all the terms relevant to their offer from this huge inventory of possible terms. Due to the limit of exploration capability, most advertisers can only bid on a handful of relevant keywords which lead to insufficient advertising effect. To tackle this problem of identifying an appropriate set of keywords for a specific advertiser, keyword recommendation technology was employed to help advertisers optimize their campaigns and improve the revenue of the search engine by enhancing competition in the auctions. Previous approaches to the keyword recommendation problem can be divided into the following types: mining query-click logs or advertiser log [1], mining semantic relationships between terms [2,3], recommending bid phrases from given ad landing pages[4]. Most of these existing works generate potential candidates and capture semantic similarity between terms based on fewer types of data resources. The rich relevance feedback information from users and advertisers and different types of relationships between keywords have not been fully utilized.

In this paper, we formulate the keyword recommendation problem as a link prediction task in multi-relational network which are constructed from multiple interaction data resources such as the advertiser database, the auction logs, the search click logs, search session logs and so on. Then we can solve this problem in a supervised learning paradigm by incorporating semantic path-based feature learning and network embedding information. In the meantime, a ranking model can be learned to generate top-n recommended keywords based on historic bidding and feedback data of advertisers.

2. DATA SOURCE & PROBLEM SETTING
2.1 Data Sources
Several sources of data can be used to retrieve sufficient keyword candidates and learning rich and diverse representation features for keyword recommendation.

2.1.1 Advertiser Database. The advertiser database includes the keywords list bought by advertisers.

2.1.2 Auction Logs. The auction logs record the detailed auction processes, and the co-occurrence of two keywords in one auction means they are commercially related.

2.1.3 Search Click Logs. The search click logs record the submitted queries and the corresponding search results and clicks. The terms associated with a same clicked URL are usually semantically related.

2.1.4 Search Session Logs. The search session logs record the query reformulation sequences of different users. The temporally close queries within a search session with good end are related.

2.2 Multi-relational Network Construction
Base on the aforementioned four data sources, a heterogeneous or multi-relational network can be constructed to encode structured...
information of multiple types of nodes and links. A snippet of this network is presented in Fig. 1. The blue squares denote different advertisers, green circles denote keywords bought by corresponding advertisers, red circles denote the keyword candidates retrieved from different data sources. The green lines denote the bidding relations between advertisers and keywords, blue lines denote the relations of co-occurring in same auctions between keywords, black lines denote the co-click relations, orange lines denote the adjacent relations in search sessions.

![Figure 1: A snippet of this multi-relational network with three types of nodes and four types of relationships.](image)

We collect and sample the data from a commercial search engine in two months to build the complete network, the statistics of this network can be found in Table 1.

Table 1: Information of the datasets

<table>
<thead>
<tr>
<th>Number of nodes</th>
<th>123713 advertisers, 153291895 keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of links</td>
<td>211478885 green links, 744963799 blue links, 985014321 black links, 428775103 orange links</td>
</tr>
</tbody>
</table>

3. METHODOLOGY

3.1 Mining Informative Features

For this task, four types of features can be learned as follows,

3.1.1 Meta-Path-Based Similarity Features

Meta-paths [6] can be used to facilitate node proximity measurement in heterogeneous network. We adopt normalized path count and path-constrained random walk as the similarity features to represent the connectivity between advertisers and keyword candidates along different types of paths. Some possible meta-paths in Fig. 1 are: a1→k3→a2→k2, a1→k3→k5, a1→k3→k7, a1→k1→k7→k5.

3.1.2 Network Embedding Features

Since this multi-relational network is composed of four bipartite networks \(\{ V_A \cup V_B, E_k \} \) where the keyword vertices are shared across these networks. We can apply the second-order proximity [7] to learn the network embedding features as \(\min\{ -\sum_{k=1}^{4} \Sigma_{(l,j)\in E_k} w_{lj} \log p(v_i|v_j) \} \), where \(p(v_i|v_j) = \exp(u_i^T \cdot u_j) / \Sigma_{k=1}^{4} \exp(u_i^T \cdot u_j) \) denotes the conditional probability of vertex \(v_i \) given vertex \(v_j \).

3.1.3 Semantic Features

We use a deep learning neural network model [5] to measure the similarity of candidate keywords and advertiser’s original keywords using historical clicked data. A click weighted similarity metric of different pairs of keyword and low-dimension semantic vectors are chosen as features.

3.1.4 Statistical Features

Some other features of advertisers and candidate keywords such as historical impressions and clicks, average cost per click, average post-click quality score, average click-through rate, bidding and competition statistics.

3.2 Supervised Link Prediction Model

Based on the informative features mining from multi-relational network, we use the Field-aware Factorization Machines model [8] to model and predict if the (advertiser, keyword) pair has a relationship. The FFM model has the form as:

\[
\begin{align*}
\mathcal{L}(X) &= w_0 + \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{4} \left(\mathcal{V}_{i,k} \cdot \mathcal{V}_{j,k} \right) x_i x_j + \sum_{f=1}^{F} \sum_{k=1}^{4} \left(\mathcal{V}_{f,k} \cdot \mathcal{V}_{f,k} \right) x_f x_f
\end{align*}
\]

and can be trained based on advertisers’ historical good bidding keywords and can generate probabilistic score for each candidate keyword.

4. EVALUATION AND CONCLUSIONS

By splitting the dataset into two periods: first month for training and second month for testing, we deploy and verify our approach on the real sponsored search data and compared the top-20 recommendation performance with several existing methods such as random walk (RW) and matrix factorization (MF) in precision and recall metrics. The performance of different recommendation method is shown in Table 2.

Table 2: Performance of keyword recommendation

<table>
<thead>
<tr>
<th>Method</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>RW</td>
<td>0.462</td>
<td>0.377</td>
</tr>
<tr>
<td>MF</td>
<td>0.535</td>
<td>0.396</td>
</tr>
<tr>
<td>SLP</td>
<td>0.623</td>
<td>0.540</td>
</tr>
</tbody>
</table>

With rich representation of structure in the multi-relational network and capability of retrieving more candidates, the experimental results demonstrated the effectiveness of proposed approach in recommending suitable keywords to advertisers.

5. REFERENCES

