
PRSP: A Plugin-based Framework for RDF Stream
Processing

Qiong Li
School of Computer Science

and Technology,Tianjin
University

Tianjin Key Laboratory of
Cognitive Computing and

Application
Tianjin 300350, P.R. China

liqiong@tju.edu.cn

Xiaowang Zhang∗
School of Computer Science

and Technology,Tianjin
University

Tianjin Key Laboratory of
Cognitive Computing and

Application
Tianjin 300350, P.R. China
∗Corresponding author

xiaowangzhang@tju.edu.cn

Zhiyong Feng
School of Computer

Software,Tianjin University
Tianjin Key Laboratory of
Cognitive Computing and

Application
Tianjin 300350, P.R. China

zyfeng@tju.edu.cn

ABSTRACT
In this paper, we propose a plugin-based framework for RDF stream
processing (PRSP). With this framework, we can apply SPARQL
engines to process C-SPARQL queries with maintaining the high
performance of those engines in a simple way. Taking advantage
of PRSP, we can process large RDF streams in a distributed contex-
t via distributed SPARQL engines. Moreover, we can evaluate the
performance and correctness of existing SPARQL engines in han-
dling RDF streams in a united way, which amends the evaluation
of them ranging from static RDF to dynamic RDF. Finally, we ex-
perimentally evaluate the performance and correctness of PRSP on
YABench. The experiments show that PRSP can still maintain the
high performance with SPARQL engines in RDF stream processing
although there are some slight differences among them.

Keywords
RDF Stream; RSP; C-SPARQL; SPARQL

1. INTRODUCTION
RDF stream, as a new type of dataset, can model real-time and

continuous information in a wide range of applications, e.g., envi-
ronmental monitoring, smart cities and so on. But data stream is
unbounded sequences of time-varying data element and difficult to
store. What is more, there are few RSP[1] (RDF stream processing)
systems, such as C-SPARQL[2], implemented for supporting RDF
streams due to its complicacy in processing. On the other hand,
there are many popular and efficient SPARQL engines supporting
only static RDF graphs, such as centralized engines, Jena, RDF-3X
and gStore, and distributed systems, TriAD[3], gStoreD [5] and so
on. So, it is an interesting problem to evaluate continuous queries
by employing SPARQL engines.

In this paper, we provide a plugin-based framework for RDF
stream processing named PRSP, which makes it possible to use the

c©2017 International World Wide Web Conference Committee (IW3C2),
published under Creative Commons CC BY 4.0 License.
WWW 2017 Companion, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4914-7/17/04.
http://dx.doi.org/10.1145/3041021.3054243

.

high-performance SPARQL engines valid only for RDF graphs, to
process RDF streams. Moreover, within this framework, we can
exploit any SPARQL engines to process RDF streams in a conve-
nient way and compare their performance under a unified frame-
work. And users can choose the favourable systems based on their
all kinds of requirements. For example, they have the need to han-
dle large-volume RDF streams, thus distributed engines are the best
choice.

2. C-SPARQL TO SPARQL
RDF stream An RDF stream S is defined as ordered sequences of
pairs, made of an RDF triple and a timestamp τ : (〈s, p, o〉, τ).
C-SPARQL query Formally, a C-SPARQL query Q can be taken
as a 5-tuple of the form Q = [Req, S,w, s, QSPARQL], where
• Req: the registration;
• S: the RDF stream registered;
• w: RANGE, i.e., the window size;
• s: STEP, i.e., the updating time of windows;
• QSPARQL: a SPARQL query.

Let Q be a C-SPARQL query, we use Req(Q), S(Q), w(Q),
s(Q), andQSPARQL(Q) to denote the registration, the RDF stream
registered, RANGE, STEP, and the SPARQL query of Q.

Now, we consider an example: Let QTemp be a C-SPARQL
query TempQuery shown as follows:

1. REGISTER QUERY TempQuery AS
2. SELECT ?obs
3. FROM STREAM TempStream [RANGE 5s STEP 4s ]
4. WHERE { ?obs observedProperty AirTemperature . }

Based on our proposed formalization, we can find:
• Req(QTemp) = REGISTER QUERY TempQueryAS;
• S(QTemp) = TempStream;
• w(QTemp) = 5s;
• s(QTemp) = 4s;
• QSPARQL(QTemp) is a SPARQL query as follows:

1. SELECT ?obs
2. WHERE { ?obs observedProperty AirTemperature . }

A (logical) window denoted by G(S,w, s, t) for an RDF stream S,
a window size (RANGE) w, an updating time of windows (STEP)
s, and a time t (as the present time) is a collection of triples defined
as: where k = 0, 1, 2, . . . and t′ = t+ ks,

Gk(S,w, s, t) = {〈s, p, o〉 | (〈s, p, o〉, τ) ∈ S and t′−w ≤ τ ≤ t′}.

815



Now, we can conclude the main result of this poster:

THEOREM 1. LetQ be a C-SPARQL query. For any RDF stream
S and any present time t, if S is registered in Q then for any
k = 0, 1, 2, . . ., we have JQK[S,t] = JQSPARQLKGk(S,w,s,t).

3. FRAMEWORK OF PRSP
PRSP is an extension of SPARQL for querying over RDF stream-

s shown in Figure 1. Both C-SPARQL query and RDF streams as
the input of PRSP are transformed by the plugin query rewriting
and data transformer respectively. After that, the output from the
former plugins as the input of SPARQL API, the results are ob-
tained by a SPARQL query engine. And the right box, consisting
of any SPARQL engine, is used as a black box to evaluate RDF
graphs.
Query Rewriting A C-SPARQL query Q as the input of query
rewriting mode, generate SPARQL query (i.e.,QSPARQL) and win-
dow selector (i.e., w(Q) and s(Q)), which can be addressed in S-
PARQL API and data transformer module respectively.
Data Transformer The data transformer module handles RDF stream-
s via a DSMS. And it transforms RDF streams into RDF graphs
Gk(S,w, s, t) based on the window size and step set at window
operator.
SPARQL API Our proposed plugin-based framework for RDF stream
processing (PRSP) introduces a unified interface for RDF engines,
in which a trigger (serving as Req, i.e., the registration of C-SPARQL
query) for pushing SPARQL queries periodically and SPARQL API
for running SPARQL engines.

Data Transformer

Query Rewriting

Window 
Selector

SPARQL

APISPARQL 
Query

RDF

Plugin in RSP

RDF 
Stream

Continuous
 Query

Result

Result

Centralized 
Engines

DIstributed 
Engines

Figure 1: The framework of PRSP

4. EXPERIMENTS AND EVALUATIONS
All centralized experiments were carried out on a machine run-

ning Linux, which has 4 CPUs with 6 cores and 64GB memory,
and 5 nodes with the same performance for distributed experiments.
We utilized YABench RSP benchmark [4], which uses a real world
dataset about water temperature. In our experiments, we performed
tumbling windows with a window size and step of 5 seconds re-
spectively, and chose two BGP queries, Q1 and Q2. Q1 is a BGP
query with four forms from YABench, and Q2 is the rewriting of
Q1 with three triples.

Table 1: Precision/Recall results
sensor Jena RDF-3X gStore gStoreD TriAD

Precision
100 99% 93% 100% 100% 97%
300 97% 94% 100% 100% 93%
500 85% 88% 100% 100% 100%

Recall
100 95% 89% 75% 72% 95%
300 94% 91% 88% 76% 92%
500 92% 79% 77% 63% 91%

The performance of each engine is shown in Fig 2, which is car-
ried out under the five different input loads for windows using the
two queries,Q1 (Fig 2(a)) andQ2 (Fig 2(b)). When the load ranges

100 200 300 400 500

101

102

103

104

The number of sensors

Ti
m

e[
m

s]

Jena RDF-3X gStore gStoreD TriAD

(a) The response time of Q1

100 200 300 400 500

101

102

103

104

The number of sensors

Ti
m

e[
m

s]

Jena RDF-3X gStore gStoreD TriAD

(b) The response time of Q2

Figure 2: Response time in different scenarios within PRSP

TLT QRT EET

101

102

103

104

T i
m

e(
m

s)

Jena RDF-3X gStore gStoreD TriAD

(a) s = 100 sensors

TLT QRT EET

102

103

104

T i
m

e(
m

s)

Jena RDF-3X gStore gStoreD TriAD

(b) s = 500 sensors

Figure 3: RDF stream for processing time in PRSP

from s = 100 sensors to s = 500 sensors, the query response
time is increased in varying degrees except for gStoreD [5]. Fig 3
shows the time of three processes under s = 100 (Fig 3(a)) and
s = 500 (Fig 3(b)) obtained from query Q2, including triples load
time (TLT), query response time(QRT), and engine execution time
(EET). TLT from RDF-3X, gStore, and gStoreD except TriAD oc-
cupies a large part of EET, resulting in their lower efficiency for
processing RDF streams. Table 1 illustrates the results of precision
and recall from the experiments under three load scenarios (i.e.,
s = 100/300/500) in PRSP. Along with more input load for win-
dows, most of them enjoy lower recalls with high accuracy.

5. ACKNOWLEDGMENTS
This work is supported by the program of the National Natural

Science Foundation of China (61672377), the National Key Re-
search and Development Program of China (2016YFB1000603),
and the Key Technology Research and Development Program of
Tianjin (16YFZCGX00210).

6. REFERENCES
[1] http://www.w3.org/community/rsp/.
[2] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and

M. Grossniklaus. Querying RDF streams with C-SPARQL.
ACM SIGMOD Record, 39(1):20–26, 2010.

[3] S. Gurajada, S. Seufert, I. Miliaraki, and M. Theobald. TriAD:
a distributed shared-nothing RDF engine based on
asynchronous message passing. In: Proc. of SIGMOD’14,
pp.289–300, 2014.

[4] M. Kolchin, P. Wetz, E. Kiesling, and A. M. Tjoa. YABench:
A comprehensive framework for RDF stream processor
correctness and performance assessment. In: Proc. of
ICWE’16, pages 280–298. Springer, 2016.

[5] P. Peng, L. Zou, M. T. Özsu, L. Chen, and D. Zhao.
Processing sparql queries over distributed rdf graphs. VLDB
J., 25(2):243–268, 2016.

816

http://www.w3.org/community/rsp/

	Introduction
	C-SPARQL to SPARQL
	Framework of PRSP
	Experiments and Evaluations
	Acknowledgments
	References



