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ABSTRACT
A fundamental issue with current truth discovery methods is
that they generally assume only one true value for each ob-
ject, while in reality objects may have multiple true values.
We propose a graph-based approach, called SmartMTD, to
relax this assumption in truth discovery. SmartMTD mod-
els and quantifies two types of source relations to estimate
source reliability precisely and to detect malicious agreement
among sources for multi-truth discovery. Two graphs are
constructed based on the modeled source relations, which
are further used to derive two aspects of source reliability
via random walk computation.
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1. INTRODUCTION
Considerable research efforts have been conducted to solve

the truth discovery problem. Although these methods con-
sider various factors to facilitate truth discovery, they com-
monly assume that each object has exactly one true value
(i.e., single-truth assumption) [4, 2]. However, in the real
world, multi-truth objects—such as the children of a person—
widely exist. In this work, we study the problem of truth
discovery for multi-truth objects, i.e., the multi-truth dis-
covery (MTD) problem. We propose a graph-based model,
called SmartMTD, as an overall solution, which incorporates
two important implications, namely source relations and ob-
ject popularity. We propose to model the two-sided relations
among sources, based on which we construct graphs to cap-
ture source features. Specifically, source authority features
and two-sided source precision are captured by ±supportive
agreement graphs, while source dependence degrees are quan-
tified by ±malicious agreement graphs. Random walk com-
putation is applied on both graphs to estimate source re-
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liability and independence degrees. We further propose to
differentiate source reliability by the popularities of objects,
to minimize the number of people misguided by false values.

2. THE SMARTMTD APPROACH
Given a set of multi-truth objects (O), conflicting values
V can be collected from a set of sources (S). We denote
the set of all values of an object o provided by all sources
in S as Uo, the set of values provided by a source s on o
as Vso (i.e., positive claims). By incorporating the mutual
exclusion assumption, s is believed to implicitly invalidate all
the other values on o, the disclaimed values are denoted as
Ṽso (i.e., negative claims), which is calculated by Uo − Vso .
The goal of SmartMTD is to identify a set of true values
(Vo∗) from V, for each object o, satisfying that Vo∗ is as close
to the ground truth Vog as possible, while estimating two
aspects of source reliability, namely positive precision (τ(s),
the probability of the positive claims of a source being true),
and negative precision (τ̃(s), the probability of the negative
claims of a source being false). The perfect truth discovery
result satisfies Vo∗ = Vog.

Intuitively, if the positive (resp., negative) claims of a
source are agreed by most other sources, this source is likely
to have high positive (resp., negative) precision. This means
that the inter-source agreements (i.e., the common values
claimed or disclaimed by two sources) indicate source relia-
bility endorsement. This motivates us to measure sources’
positive (resp., negative) precision by quantifying their +agree-
ments (resp., –agreements), i.e., the agreements among sources
regarding their positive (resp., negative) claims. In reality,
sources may not only support one another by providing the
same true claims, but also maliciously copy from others to
provide the same false claims, which sometimes mislead the
audience. Therefore, we identify two types of source re-
lations. Specifically, sharing the same true values means
one source supports/endorses the other source and indicates
a supportive relation between two sources. We define the
common values between sources as supportive agreements
and measure source reliability by quantifying such support-
ive agreements. In contrast, if two sources share a signifi-
cant number of false values, they are likely to copy from each
other, indicating a copying relation. We define the sharing
of false values as malicious agreements. In addition, the sig-
nificance of knowing the truths of different objects may vary
in reality. For example, the phone number of a restaurant
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Table 1: Comparison of different methods: the best and second best performance values are in bold.

Method
Book-Author Dataset Parent-Children Dataset

P R F1 WP WR WF1 T(s) P R F1 WP WR WF1 T(s)

Voting 0.84 0.63 0.72 0.83 0.64 0.72 0.07 0.88 0.85 0.87 0.69 0.68 0.69 0.56
Sums 0.84 0.64 0.73 0.83 0.64 0.72 0.85 0.90 0.89 0.90 0.88 0.86 0.87 1.13

Avg-Log 0.83 0.60 0.70 0.83 0.64 0.72 0.61 0.90 0.89 0.89 0.88 0.86 0.87 0.75
TruthFinder 0.84 0.60 0.70 0.83 0.60 0.70 0.74 0.90 0.89 0.90 0.88 0.85 0.86 1.24
2-Estimates 0.81 0.70 0.75 0.80 0.68 0.74 0.38 0.91 0.89 0.90 0.88 0.86 0.87 1.34

LTM 0.82 0.65 0.73 0.82 0.62 0.71 0.98 0.87 0.90 0.88 0.86 0.89 0.87 0.99
MBM 0.83 0.74 0.78 0.82 0.71 0.76 0.67 0.90 0.92 0.91 0.87 0.90 0.88 2.17

SmartMTD 0.83 0.75 0.79 0.83 0.78 0.80 0.43 0.90 0.93 0.91 0.93 0.92 0.93 0.92

is more frequently used by customers and thus has bigger
impact than the year when it is opened. Taking object pop-
ularity into consideration could help us better model MTD.

Algorithm 1 shows the procedure of SmartMTD. First,
parameters including the iteration convergence threshold δ,
smoothing factor β, positive precision ppmax, negative preci-
sion npmax, two-sided dependence scores (pcmax and ncmax)
of sources with the highest visit probabilities in ±supportive
agreement graphs and ±malicious agreement graphs are ini-
tialized, where both the confidence scores of each value v
being true or false (Cv, Cṽ) are initialized by majority vot-
ing. The algorithm checks the cosine similarities of the two-
sided source precision obtained by two successive iterations
to determine whether it converges—the algorithm only ter-
minated when the difference between such cosine similarities
derived from two successive iterations becomes smaller than
a certain threshold δ.

3. EXPERIMENTS
We compared SmartMTD with two types of baselines: i)

methods under single-truth assumption, including Voting,
Sums, Average-Log, TruthFinder, and 2-Estimates, ii) MTD
methods, LTM [4] and MBM [2], on two real-world datasets,
namely book-author dataset [3] and Parent-Children dataset
(extracted from the Biography dataset [1]). All methods
were evaluated in terms of precision (P), recall (R), F1 score
(F1), and execution time (T). Since we introduce a new con-
cept of object popularity, we used object popularity weighted
precision (WP), recall (WR) and F1 score (WF1) as ad-
ditional metrics. Table 1 shows the comparison results.
SmartMTD consistently achieved the best results on all met-
rics except precision, on which SmartMTD still showed the
second best performance on the experimental datasets. Among
the three methods specially designed for MTD, our approach
is the most efficient with the lowest execution time. This is
because LTM includes complicated Bayesian inference over
the complex probabilistic graphical model, and MBM con-
ducts time-consuming copy detection, while our approach is
based on a relatively simple graph model.

4. CONCLUSION
We propose a graph-based approach, SmartMTD, which

incorporates two important concepts, source relations and
object popularity, for MTD. In particular, we construct sup-
portive agreement graphs to model the endorsement among
sources, from which to derive two-sided source reliability,
and malicious agreement graphs to capture copying relations
among sources. We also consider and develop techniques to
quantify object popularity based on object occurrences and
source coverage. Empirical studies show the effectiveness of
SmartMTD. Our future work involves exploring more impli-
cations such as the long-tail phenomenon on source coverage
and source confidence on claims to improve SmartMTD.

Algorithm 1: The Algorithm of SmartMTD.
Input: O, S, and V.
Output: Vo∗.

1 Initialize δ, β, ppmax, npmax, pcmax, ncmax
2 Initialize Cv , Cṽ for each v ∈ V, o ∈ O

// Object popularity quantification
3 foreach o ∈ O do

4 Po =
∑
s∈So

1
Cov(s)

, Po is the popularity degree of o, So is the set

of sources provide values on o, Cov(s) is the percentage of s’s
provided objects over O

5 repeat

// Malicious agreement detection
6 foreach o ∈ O do
7 construct ±malicious agreement graphs for So (each node is a

source belongs to So) by quantifying the weights of each edge
by

ωco (s1 → s2) = β+(1−β)· |Ao(s1,s2)|
|Vs2o |

·(1−
∏
v∈Ao(s1,s2) Cv)

and ω̃co (s1 → s2) =

β + (1 − β) · |Ão(s1,s2)|
|Ṽs2o |

· (1 −
∏
v∈Ão(s1,s2)

Cṽ), where

Ao(s1, s2) = Vs1o ∩ Vs2o , Ão(s1, s2) = Ṽs1o ∩ Ṽs2o ,

8 derive D(s, o), D̃(s, o) by applying random walk, where D(s, o)

(resp., D̃(s, o)) is the dependence score of s providing positive
(resp., negative) claims on o

9 compute I(s, o) (resp., Ĩ(s, o)) by 1 − D(s, o) (resp.,

1 − D̃(s, o)), where I(s, o) (resp., Ĩ(s, o)) is the independence
score of s providing positive (resp., negative) claims on o

// ±Source Reliability computation
10 construct ±supportive agreement graphs (each node is a source

belongs to S) by quantifying the weights of each edge by A(s1, s2) =∑
o∈Os1∩Os2

|Ao(s1,s2)|
|Vs2o |

· (1−
∏
v∈Ao(s1,s2) Cṽ) · Po · I(s1, o),

ω(s1 → s2) = β + (1 − β) · A(s1,s2)
|Os1∩Os2 |

and Ã(s1, s2) =

∑
o∈Os1∩Os2

|Ão(s1,s2)|
|Ṽs2o |

· (1−
∏
v∈Ão(s1,s2)

Cv) · Po · Ĩ(s1, o),

ω̃(s1 → s2) = β + (1 − β) · Ã(s1,s2)
|Os1∩Os2 |

11 derive τ(s), τ̃(s) by applying random walk

// Value confidence score computation
12 foreach v ∈ V, o ∈ O do

13 compute Cv , Cṽ by Cv =

∑
s∈Sv τ

′(s)+
∑
s∈Sṽ

(1−τ̃′(s))
|So|

and

Cṽ =

∑
s∈Sv (1−τ′(s))+

∑
s∈Sṽ

τ̃′(s)
|So|

, where Sv (resp., Sṽ)

is the set of sources claim (resp., disclaim) v on o

14 until convergence;
15 return {(o, v)|v ∈ V ∧ Cv > Cṽ ∧ v ∈ Uo, o ∈ O}
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