






outcomes in treating AD. The work reported here demonstrates 

the value of a TM approach in distilling knowledge from 

research findings related to AD that are reported in text.  Better 

knowledge of the availability and impact of treatments should 

eventually lead to treatment and care regiments that achieve the 

goal of improved quality of life in older adults and caregivers 

[3].  

The present results show that a carefully labeled training set 

corpus can form a good basis for subsequently automated entity 

recognition within medical research publications. While the 

present research focused only on AD it seems likely that similar 

results should be obtained with other medical syndromes and 

contexts.  

In future research, it would be good to use a larger corpus, a 

larger set of entity types, and more extensive test data in 

showing that the methods introduced here can be scaled up to 

more extensive distillations of knowledge within the research 

literature. NER would then need to be followed by additional 

analyses to identify useful treatment guidelines and options, so 

that useful clinical evidence can be synthesized from large 

volumes of research literature. 

Table 2: Example of unseen Interventions 

Search criteria Intervention 

Normal search 

unfamiliar music, dance therapy, massage, 

environmental cueing, Chinese medicine, 

coral calcium, animal-assisted therapy, 

multi-sensory therapy,  

Past week physical therapy, intranasal insulin therapy 

Past month 

physical therapy, intranasal insulin 

therapy, antiepileptic drugs, light therapy, 

flashing light therapy, mouse’s spine 

Past year 

flashing light therapy, routine screening, 

biogen therapy, nilvadipine, BACE 

inhibitors 
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